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In this essay, which is based on a talk that I gave at the 4th European Set
Theory Colloquium in 2023, I will discuss the concept of definable cardinality
for subsets and quotient spaces of Polish spaces and contrast it with the
classical notion of cardinality.

Although this concept can be studied in much more generality, to keep
things simple I will assume below that definable means Borel (definable).

1 Sets

I will start first by considering Borel sets in Polish spaces. Given two such
sets P,Q, we have that P,Q have the same (classical) cardinality, in symbols

|P | = |Q|

if there is an (arbitrary) bijection

f : P �� Q.

Since we are in the category of definable sets, it is natural to also consider
definable bijections. We therefore say that P,Q have the same Borel cardi-
nality, in symbols

|P |B = |Q|B,
if there is a Borel bijection

f : P �� Q.

There is a classical result, see, e.g., [K1, 15.6], that shows that these notions
coincide:

Theorem 1.1. For any two Borel sets P,Q in Polish spaces,

|P | = |Q| ⇐⇒ |P |B = |Q|B.
∗The author was partially supported by NSF Grant DMS-1950475. Thanks also to

Forte Shinko for help with the picture in Section 3.
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2 Quotient Spaces

The situation is however dramatically different when we study, instead of
Borel sets in Polish spaces, quotient spaces X/E, where X is a Polish space
and E is a Borel equivalence relation on X.

Since the case when X is countable is trivial, I will assume form now
on that Polish spaces X are uncountable, thus |X| = |R|. Moreover to keep
things focused, I will consider below the case when E is a countable Borel
equivalence relation (CBER), i.e., each E-class is countable. A survey of the
theory of countable Borel equivalence relations can be found in [K2].

There are many important countable Borel equivalence relations that
appear in several areas of mathematics. Here is a small sample:

• Commensurability of positive reals.

• Turing and arithmetical equivalence in 2N.

• Equality mod finite in P(N).

• Isomorphism of torsion-free abelian groups of finite rank, i.e, subgroups
of (Qn,+), for some n ≥ 1.

• Orbit equivalence relations induced by Borel actions of countable groups
on Polish spaces. (The orbit equivalence relation of a group action has
as its equivalence classes the orbits of the action. Its quotient space is
the orbit space of the action.)

In fact we have the following result:

Theorem 2.1 (Feldman-Moore [FM]). Every countable Borel equivalence
relation is generated by a Borel action of a countable group.

Given two quotients X/E, Y/F of Polish spaces by countable Borel equiv-
alence relations, we say as usual that they have the same (classical) cardi-
nality, in symbols

|X/E| = |Y/F |,

if there is an (arbitrary) bijection

f : X/E �� Y/F.

We next say that they have the same Borel cardinality, in symbols

|X/E|B = |Y/F |B,
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if there is a bijection
f : X/E �� Y/F,

that has a Borel lifting

f∗ : X → Y

i.e., satisfies
f([x]E) = [f∗(x)]F .

Similarly we define the preorder

|X/E|B ≤ |Y/F |B

if there is an injection
f : X/E � Y/F,

with Borel lifting.
Now it is clear that all quotient spaces X/E, with E a countable Borel

equivalence relation, have the same (classical) cardinality

|X/E| = |R|,

so the picture of the (classical) cardinalities of these quotient spaces is an
uninspiring dot:

•|X/E| = |R|.

This fact crucially uses the Axiom of Choice (AC) and it is a very crude way
to measure the size of such quotient spaces as it does not take into account
the structure of E itself.

For example, is it reasonable to think that there are as many Turing
degrees as there are sets of integers mod finite or that all orbit spaces of
actions of the free group F2 have the same cardinality as the orbit spaces of
actions of the group Z?

It turns out that studying the Borel cardinality of quotient spaces of
countable Borel equivalence relations reveals a much more complex and deep
structure.

3 Borel Cardinalities of Quotients of CBERs

To discuss this structure, we first need to discard a trivial (in our context)
case, that of the smooth relations. A countable Borel equivalence relation E
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is called smooth if it admits a Borel transversal, i.e., a Borel set that contains
exactly one element from each E-class. For those it is easy to check that

|X/E|B = |R|B.

(where we identify R with its quotient by the equality relation). So from
now on I will assume that we are only considering nonsmooth countable
Borel equivalence relations.

Here is then a rough picture of the preorder of Borel cardinalities |X/E|B
of quotients by countable Borel equivalence relations:

Borel
cardinality

c0 hyperfinite

c∞ universal

classical
cardinality

Figure 1: Classical vs Borel cardinalities

Here is an explanation of this picture:

• There is a smallest Borel cardinality, c0, where

c0 = |X/E|B,

for any hyperfinite Borel equivalence E, where E is hyperfinite if E =⋃
nEn, with E1 ⊆ E2 ⊆ . . . Borel equivalence relations with finite

equivalence classes. Equivalently these are the CBERs generated by
Borel actions of the group Z. In particular this indicates that all the
hyperfinite quotients (i.e., quotients by hyperfinite relations) have the
same Borel cardinality. Typical examples of hyperfinite quotients are:
the orbit space of the shift action of Z on 2Z, the space of subsets of N
mod finite and the isomorphism classes of torsion-free abelian groups
of rank 1. See [K2, Chapter 8] for references for these results.
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• There is a largest Borel cardinality, c∞. Typical examples of quotient
spaces with this cardinality are: the orbit space of the shift action of
F2 on 2F2 and (Slaman-Steel) the space of all arithmetical degrees; see
[K2, Chapter 12].

• c0 < c∞ (see [K2, Chapter 6]).

• There are continuum many intermediate Borel cardinalities

c0 < c < c∞,

including many incomparable ones (Adams-Kechris [AK]). Typical
examples of intermediate cardinalities are those of the orbit spaces of
free (i.e., having trivial stabilizers) Borel actions of certain countable
groups, including free actions of nonamenable groups that admit an
invariant Borel probability measure, as for example the shift action of
F2 on 2F2 restricted to its free part. Another class of examples are
the isomorphism types of the torsion-free abelian groups of rank n, for
n ≥ 2. For references, see [K2, Chapter 7].

4 Methodology

Next I would like to discuss some important methodological points concern-
ing the study of Borel cardinalities of quotients of countable Borel equiva-
lence relations.

(a) The results mentioned earlier about the structure of Borel cardinali-
ties of quotients X/E, where E is a countable Borel equivalence rela-
tion, have been proved using methods of ergodic theory and crucially
employ measure theory. By contrast, generically all countable Borel
equivalence relations are hyperfinite, so on comeager sets their quo-
tient spaces have the same Borel cardinality, c0, see [K2, Section 8.3].

(b) Therefore, it has been a major open problem to find purely set theo-
retic methods to prove such results.

(c) Using methods of ergodic theory, it turns out that there are important
set theoretic rigidity phenomena underlying many of these results. For
example, under certain circumstances, if E is the orbit equivalence re-
lation induced by a Borel action of a countable group on a Polish space
X, then |X/E|B “remembers” a lot about the group (and sometimes
the action).
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For instance, if for a set of odd primes S, we let

HS =Fp∈S(Z/pZ ? Z/pZ)× Z

and let ES is the equivalence relation induced by the shift action of
HS on 2HS , restricted to its free part XS , then

|XS/ES |B ≤ |XT /ET |B ⇐⇒ S ⊆ T,

(Hjorth-Kechris); see [K2, Theorem 7.11].

Consider next the canonical action of GLn(Z) on Rn/Zn and let Gn

be the associated orbit equivalence relation. Then

m ≤ n ⇐⇒ Gm ≤B Gn.

(see [AK]). In particular, the Borel cardinality of the orbit space of
this action “encodes” the dimension n.

For another example, if En is the isomorphism relation of torsion-free
abelian groups of rank n (on an appropriate Polish space Xn), then
|Xn/En|B remembers n:

|Xm/Em|B ≤ |Xn/En|B ⇐⇒ m ≤ n,

(Thomas, see [T]). In particular, for n ≥ 2,

c0 < |Xn/En|B < c∞.

(d) As seen in (c), it should be emphasized that the existence of intermedi-
ate or incomparable Borel cardinalities is not due to the construction
of artificial counterexamples (compare this, for example, with exis-
tence of incomparable r.e. degrees) but reflects structural differences
of natural and important examples.

5 Problems

I will finish by mentioning a few major open problems that have been open
for decades.

1. What is the Borel cardinality, cTD, of the set of Turing degrees? It is
known that

c0 < cTD ≤ c∞

(see [SlSt]) but whether cTD = c∞ is unknown. If this was the case,
this would contradict Martin’s Conjecture on functions on the Turing
degrees.
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2. Let E be the orbit equivalence relation induced by a Borel action of
a countable amenable group. Is |X/E|B = c0, i.e., is E hyperfinite?
(Weiss, see [W])

3. Let E1 ⊆ E2 ⊆ . . . be hyperfinite countable Borel equivalence re-
lations. Thus for each n, |X/En|B = c0. Let E =

⋃
nEn. Is E

hyperfinite, i.e., |X/E|B = c0.

4. If F ⊆ E are countable Borel equivalence relations and |X/F |B = c∞,
is it true that |X/E|B = c∞ (Hjorth, see [K2, Problem 12.22]).
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