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Forcing axioms
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Forcing axioms relative to a cardinal «:
The powerset of X is “as thick as possible” for given X of size «,
Forcing axioms for x can be divided in two categories:

* topological maximality: strong forms of Baire’s category
theorem, generic points, MM* .

e algebraic maximality: closure of £ (X) under a variety of set
theoretic operations for any fixed X of size «, algebraically
closed structures, Woodin’s axiom ().

The talk is mainly aimed at formulating precisely the second of
these two concepts.
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Forcing axioms relative to a cardinal «:
The powerset of X is “as thick as possible” for given X of size «,

Forcing axioms for x can be divided in two categories:

topological maximality: strong forms of Baire’s category
theorem, generic points, MM* .

algebraic maximality: closure of # (X) under a variety of set
theoretic operations for any fixed X of size «, algebraically
closed structures, Woodin’s axiom ().

MM™ and () are forcing axioms for 8y the first uncountable
cardinal.

Baire’s category theorem is a “topological” forcing axiom for
No-

Large cardinals entail “algebraic” forcing axioms for .
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Algebraic closure of structures for {+,-,0, 1}

Structures Axioms Example
Commutative | Vx,y (x-y =y -x)
semirings Vx,y,z[(x-y)-z=x-(y-2)]
withnozero | Vx(x-1=xA1-x=Xx)
divisors Vx,y(x+y=y+x)
Vx.y.z[(x+y)+z=x+(y + 2)]
Vy(x+0=xA0+x=x) N

Vx.y.z[(x+y) 2= (x-y) + (x-2)
VX, y[x-y=0- (x=0Vvy=0)]
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divisors Vx,y(x+y=y+x)
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Vy(x+0=xA0+x=x) N
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Algebraic closure of structures for {+,-,0, 1}

Structures Axioms Example
Commutative | Vx,y (x-y =y -x)
semirings Vx,y,z[(x-y)-z=x-(y-2z)]
withnozero | Vx(x-1=xA1-x=Xx)
divisors VX, y(x+y=y+x)
Iy z[(x+y) +z=x+(y+2)]
Vy(x+0=xA0+x=x) N
Vx,y,z[(x+y)-z=(x-y)+ (x-2)]
Vx.y[x-y=0-(x=0vy=0)]
Integral
domains Vx3dy (x +y =0) Z
Fields Vx[x#0 - Ay (x-y =1)] Q
Algebraically | forall n > 1
closed fields | Vxp...x,2dy 2 x;-y' =0 C
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Existentially closed structures and model companionship

<Z’ +9"091> cC <C, +7'7071> C <C[X],+,,O,1>
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Existentially closed structures and model companionship

(Z,+,-,0,1) C (C,+,-,0,1) C (C[X],+,-,0,1)

(Z,+,-,0,1) 4  (C.+..0.1) <1 (C[X]+,0,1)

Ix (x2 -2 =0)? Ax (x® 4 2x + i = 0)?
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Existentially closed structures and model companionship

<Z’ +’.’0’1> L H;JFO.1> c <C[X]9 +, -, 0,1>

(Z,+,-,0,1) 44 (C,+,-,0,1) <4 (C[X], +,-,0,1)
Definition

Given a vocabulary T and 7-structures MCN, M<yN if every
> ¢-formula with parameters in M and true in N is true also in M.
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Existentially closed structures and model companionship

(Z.+.-.0.1) £ (C+..01) C (CXL+-0.1)

(Z,+,-,0,1)  #q (C,+,-,0,1)  <q (C[X],+,-,0,1)

Definition
Given a vocabulary T and 7-structures MCN, M<y N if every
> ¢-formula with parameters in M and true in N is true also in M.

e A r-formula ¢(x1,...,Xxn) is quantifier free if it is a boolean
combination of atomic formulae.
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Existentially closed structures and model companionship

* A r-formula ¢(x1,...,Xn) is if it is a boolean
combination of atomic formulae.

Example

In the vocabulary {+, -, 0, 1}, the atomic formulae are diophantine
equations and the with parameters in a
ring M define the (in the sense of algebraic

geometry) of M:

with each aZ, bgj elements of M and

pij(y1»-~~aYm,']'7X1,-~~7Xn) = 0’ qdj(z19"'7dej7x17"‘7xn) = 0
diophantine equations (of degree 1 in the y;, z,-s).

6/24



FA AlgCl FormST AlgMaxST App
oo 00@00 oo 0000000000 0000

Existentially closed structures and model companionship

(z,+,-,0,1y £ (C,+,.,0,1) £ (C[X],+,-0,1)

(Z,+,-,0,1) %4 C,+,,0,1) <4 (C[X],+,-,0,1)

Definition
Given a vocabulary T and 7-structures MCN, M<y N if every
> ¢-formula with parameters in M and true in N is true also in M.

e A r-formula ¢(x1,...,Xn) is quantifier free if it is a boolean
combination of atomic formulae.

e A r-formula ¥(xo, ..., Xn) is a X1-formula if it is of the form

Y0, s Yk (Yoo - - s Vi X0s - - - x,) with ¢(vo, ..., Vi> X0s -+ - » Xn)
quantifier free.
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Existentially closed structures and model companionship

(Z,+,-,0,1)  #4 C,+,,0,1) <4 (C[X], +,-,0,1)

Definition

Given a vocabulary T and 7-structures MCN, M<1N if every

> ;-formula with parameters in M and true in N is true also in M.
e A r-formula ¢(xo, ..., Xn) is a X1-formula if it is of the form

Ao, s Yk (V05 -+ Vi X0s - Xp) with ¢ (vo. ... Yk X05 - - - Xn)
quantifier free.

Definition

Given a t-theory S, a r-structure M is S-ec if:
¢ there is a model of S NOM,
* M=y N for any N2M which models S.
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Existentially closed structures and model companionship

<Z’ +3'7 071> C <‘(\ia +~'7 Os1> C <C[X], +7" 0’1>

Definition
Given a vocabulary T and 7-structures MCN, M<y N if every
> ¢-formula with parameters in M and true in N is true also in M.

Definition

Given a r-theory S, a r-structure M is S-ec if:
e there is a model of S N2,
* M<yN for any NIM which models S.

Example

For S the {+, -, 0, 1}-theory of integral domains the algebraically

closed fields are the S-ec models.
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Existentially closed structures and model companionship

<Z3 +9" 0’1> {1 <(;~ +-'7 071> <1 <C[X]’ +"9 0’1>

Definition
Given a vocabulary T and 7-structures MCN, M<1N if every
> ;-formula with parameters in M and true in N is true also in M.

Definition

Given a r-theory S, a r-structure M is S-ec if:
e there is a model of S NOIM,
* M=<yN for any NIM which models S.

Example
For S the {+, -, 0, 1}-theory of integral domains the algebraically

closed fields are the S-ec models.
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Existentially closed structures and model companionship

Definition

Given a t-theory S, a r-structure M is S-ec if:
e there is a model of S NOM,
e M<yN for any N2M which models S.

Definition
Given a t-theory S, a r-theory T is the model companion of S if
TFAE for any t-structure M:

°* M is amodel of T,
e Mis S-ec.
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Existentially closed structures and model companionship

Definition

Given a r-theory S, a r-structure M is S-ec if:
e there is a model of S NOM,
e M<yN for any N2M which models S.

Definition
Given a r-theory S, a r-theory T is the model companion of S if
TFAE for any t-structure M:

e Misamodelof T,

e Mis S-ec.

Example
The {+,-,0, 1}-theory of integral domains has the {+, -, 0, 1}-theory
of algebraically closed fields as its model companion.
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The right vocabulary for a mathematical theory

Every mathematical theory can be axiomatized in first order logic
by suitably choosing the vocabulary for its basic concepts.
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The right vocabulary for a mathematical theory

Every mathematical theory can be axiomatized in first order logic
by suitably choosing the vocabulary for its basic concepts.
Consider Group Theory
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The right vocabulary for a mathematical theory

Axioms of groups in {-, e}
vx.y,z[(x-y)-z=x-(y-2)],
Vy(e-y=ynry-e=y),
Vxdy[x-y=eAy-x=g¢].
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The right vocabulary for a mathematical theory

Axioms of groups in {-, e}
vx,y,z[(x-y)-z=x-(y-2)].
Vy(e-y=ynry-e=y),
Vxdy[x-y=eAy-x=¢€].

Axioms of groups in {R, e} with R a ternary relation symbol
v¥x,yA'zR(x,y, z),

vx,y,z,w, t[((R(x,y,w) A R(y,z,t)) = Ju(R(x,t,u) A R(w, z,u))],
vy[R(e.y.y) A R(y.e.y)],

Vx3y [R(x,y,e) A R(y, x, e)].
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The right vocabulary for a mathematical theory
Axioms of groups in {-, e}
vx,y,z[(x-y)-z=x-(y-2)],
Vy(e-y=ynry-e=y),
Vxdy[x-y=eAy-x=g¢].

Axioms of groups in {R, e} with R a ternary relation symbol
Vx,yA'zR(x,y, z),
vx,y,z,w, t[((R(x,y,w) A R(y,z,t)) = Ju(R(x,t,u) A R(w, z,u))],
vy [R(e,y.y) AR(y.e,y)],
vXH.y [R(X’ y’ e) /\ R(y’ X’ e)]
The two axiomatizions are equivalent in the vocabulary {R, -, e},
modulo the axiom

vx,y,z(R(x,y,z) & x-y = 2)
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The right vocabulary for set theory

Standard axiomatization of sets in textbooks is done in vocabulary
{e}, eventually with extra symbol C.
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The right vocabulary for set theory

Standard axiomatization of sets in textbooks is done in vocabulary
{€}, eventually with extra symbol C.

Formalizing in the {€}-vocabulary the notion of ordered pair:
Kuratowski’s trick: (y, z) is coded in set theory by the set
{{y}. Ay, z}}-
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The right vocabulary for set theory

Standard axiomatization of sets in textbooks is done in vocabulary
{€}, eventually with extra symbol C.
Formalizing in the {€}-vocabulary the notion of ordered pair:

Kuratowski’s trick: (y, z) is coded in set theory by the set

{y}. {y, zi}. , .
In set theory the standard e-formula expressing x = (y, z) is

MwYwwex ow=tvw=u)AVv(vetov=y)AVv(veuov=yVvv=2)]

8/24



FA AlgCl FormST AlgMaxST App
oo 0oo0e oo 0000000000 0000

The right vocabulary for set theory

The vocabulary €, for set theory

e constants for 0, N,

* relation symbols R, for any lightface Aq-property
A(X15- -5 Xn),

¢ function symbols for a finite list of basic set theoretic
constructors.

8/24
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The right vocabulary for set theory

Lightface Aq-properties

®* {R e V: Risan n-ary relation},

e {fe V:fisafunction},

. {(a,b) eV?:.ac b},

e ..

* {ay,...,any e V": (V,€) E #(ay,...,an)} for any e-formula

#(x1, ..., Xn) where quantified variables are bounded to range
in a set.

8/24
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The right vocabulary for set theory

Lightface Aq-properties

®* {R e V:Risan n-ary relation},

e {fe V:fisafunction},

* {<a,bye V2:ach),

° ..

* {ay,...,any e V": (V,€) E ¢(a1,...,an)} for any e-formula

#(x1, ..., Xn) Where quantified variables are bounded to range
inaset(e.g.yCz =V¥x(xey-xez)=VYxey(xez)).

The lightface Ag-properties are those described in the last item
above and include all those listed in some of the above items.
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The right vocabulary for set theory

Lightface Aq-properties
e {R e V:Risan n-ary relation},
e {fe V:fis afunction},
. {(a,b) eV?:.ac b},
. -
e {(ay,...,any e V": (V,€) E é(ay,...,an)} for any e-formula

#(x1, ..., Xn) where quantified variables are bounded to range

in a set.
Complicated set theoretic relations

e {(X.vye V2 X =1V,

° {<x, YyeV2: X = SD(Y)},

. PR

® any relation which is not a A+-property
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The right vocabulary for set theory

Complicated set theoretic relations
o« {(X.vy e VEixI =1V,
° {<x, YyeV2: X = SD(Y)},

® any relation which is not a A1-property (Agp € Ay).
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The right vocabulary for set theory

Basic set theoretic operations
o 71';] :{ay,...,an) + @,
o (X,Y) > XXY,
e (X, Yy {X,Y},
[ ]

* Any provably total function whose graph is a lightface
Ag-property.
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The right vocabulary for set theory
The vocabulary €a, for set theory

¢ constants for (, N,

* relation symbols R, for any lightface Aq-property
d(X1,. .., Xn),

¢ function symbols for a finite list of basic set theoretic
constructors.

Basic set theoretic operations
° nf :{at,...,an)  aj,
e (X, Yy XXY,
e (X, YY) {X,Y},
.

* Any provably total function whose graph is a lightface
Ag-property.
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The right vocabulary for set theory
The vocabulary €a, for set theory

e constants for 0, N,

* relation symbols R, for any lightface Aq-property
A(X15-. .4 Xn),

e function symbols for a finite list of basic set theoretic
constructors.

Lightface Aq-properties

Kay,...,an) e V" : (V,€) = #(a1,...,an)}
for any e-formula ¢(x, ..., X,) where quantified variables are
bounded to range in a set.
Basic set theoretic operations
Any total function whose graph is a lightface Ag-property.
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Formalization of set theory
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Axioms of Morse-Kelley Set Theory in €p, U {Set, V}

Notational convention: smallcase variables indicate sets,
uppercase variables indicate classes.

Universal axioms
e Extensionality: VX, Y[(X S YAYCX) o X=Y].
* Comprehension: VX (Set(X) & X e V) AVX (X C V).
* Foundation:

YF [(F is a function Addom(F) =N) — An e N F(n+1) ¢ F(n)].
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Axioms of Morse-Kelley Set Theory in €p, U {Set, V}

Existence Axioms:
* Emptyset: (Vxx ¢ 0) A (0 € V),
¢ Infinity:
Set(N) AVx [x € N & (x is a finite Von Neumann ordinal)].
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Axioms of Morse-Kelley Set Theory in €p, U {Set, V}

Basic construction principles:

® Union and Pair: VX, Y,wwe XUY & (we XvweY)],...
e Separation: YP,x[(x € V) - (PN x) € V].
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Axioms of Morse-Kelley Set Theory in €p, U {Set, V}
Strong construction principles:

* Comprehension (b): For every e -formula y(X, Y)

vYAZVx[xeZ o (xe VAIx,..., xn(X = (X0, Xn) AU(X0, ..., xn, V)]

* Replacement:

VF,x[(F is afunction A (x € V) A (x C dom(F))) — (F[x] € V)].

* Powerset:
Vx[(xe V) > [Vz(zeP(X) o zCx)AP(x) e V]].

® Choice:

YF[
F is a function A ¥x (x € dom(F) — F(x) # 0)
N

3G (G is a function A dom(G) = dom(F) A ¥x (x € dom(G) — G(x) € F(x))

I 10/24
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Section 4

Algebraic maximality for set theory

App
0000
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Existentially closed structures for set theory

Theorem (Levy)

Let k be an infinite cardinal.
Then

(Hers€ngs A - A CP (k) <1 (V,€n,, A ACP (k)
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Algebraic maximality for # (N)

Theorem (Levy)

Let k be an infinite cardinal.
Then

<HK+,€AO,A A Q‘P(K))<1<V,€A0,A cAC P(K))
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Algebraic maximality for # (N)

Theorem (Levy)

Let k be an infinite cardinal.
Then

(Hetr€ngs A - A CP(k))<1(V.€ny. A : ACP (k).

Theorem (Shoenfield, 1961)
Let V|G| be a forcing extension of V. Then

(Hxy s €n0)<1(VI[Gl, €ny)-

13/24



AlgMaxST
00®0000000

Algebraic maximality for # (N)

e UB" denotes the family of universally Baire subsets of R
existing in V.

* (modulo a Borel isomorphism) R ~ # (N) ~ 2" and UB is a
family of subsets of P (N).

® Every univ. Baire set A of V can be naturally lifted to a univ.
Baire set AVICl of V[G] for any forcing extension V[G] of V.
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Algebraic maximality for # (N)

e UBY denotes the family of universally Baire subsets of R
existing in V.

 (modulo a Borel isomorphism) R ~ P (N) ~ 2" and UB is a
family of subsets of  (N).

e Every univ. Baire set A of V can be naturally lifted to a univ.
Baire set AVICl of V[G] for any forcing extension V[G] of V.

Theorem (Feng-Magidor-Woodin, 1992)
Let V|G| be a forcing extension of V. Then

(Hy,» €. A - A € UBVY<(V[G],€p,, A1) A e UBY).
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Algebraic maximality for # (N)

Theorem (Levy)

Let k be an infinite cardinal.
Then

<HK+,€AO,A A QP(K))<1(V,€AO,A cAC P(K))

Theorem (Shoenfield, 1961)
Let V|G| be a forcing extension of V. Then

(Hx;» €ng)<1(V[G], €ne)-
Theorem (Feng-Magidor-Woodin, 1992)
Let V|G| be a forcing extension of V. Then

(Hy, €pg0 A - A € UBVY<(V[G],€n,. AVIE - A e UBY).
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Algebraic maximality for # (N)

e UB" denotes the family of universally Baire subsets of R
existing in V.

* (modulo a Borel isomorphism) R ~ # (N) ~ 2" and UB is a
family of subsets of P (N).

® Every univ. Baire set A of V can be naturally lifted to a univ.
Baire set AVICl of V[G] for any forcing extension V[G] of V.
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, . Algebraic maX|maI|t¥ for P (N
e UB" denotes the family of universally Baire subsets of R

existing in V.
e (modulo a Borel isomorphism) R ~ P (N) ~ 2/ and UB is a
family of subsets of # (N).

e Every univ. Baire set A of V can be naturally lifted to a univ.
Baire set AICl of V[G] for any forcing extension V[G] of V.

Theorem (Woodin, 1985+Martin-Steel, 1989+ V.-Venturi,
2020)

Assume there is a proper class of Woodin’s cardinals. Then the
theory of
(Hg,,€n A - AcUBY)

is the model companion of the theory of
(V[G],eny, AVIE - A cUBY)Y

for any forcing extension V|G| of V.
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Algebraic maximality for # (X1) part /

e NS C £ (N1) is the ideal of non-stationary subsets of Nj.
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Algebraic maximality for # (X1) part /

* NS C P (Ny) is the ideal of non-stationary subsets of X;.

Definition
Let B be a cba. B is SSP if whenever V|G| is a forcing extension of
V by B

(Hx,» €, NSVIC(V[ G, €p,, NSVICE],
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Algebraic maximality for # (X1) part /

e NS C £ (N1) is the ideal of non-stationary subsets of Nj.

Definition
Let B be a cba. B is SSP if whenever V|G| is a forcing extension of
V by B

(Hx,s €, NSVYT(V[ G, €p,, NSVIE]),

Definition
Strong Bounded Martin’s maximum BMM™ holds if whenever
B is an SSP cba and V|G| is a forcing extension of V by B

(Hx,» €ny, NSY<1(V ,EAO’NSV[G])
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* NS C £ (N1) is the ideal of non-stationary subsets of Nj.
Definition
Let B be a cba. B is SSP if whenever V|G| is a forcing extension of

V by B
(Hx,» €ngs NSVIE(V[G], €n,, NSVIE]),

Definition
Strong Bounded Martin’s maximum BMM™ holds if whenever
B is an SSP cba and V|G| is a forcing extension of V by B

(Hx,» €9, NSY<1(V[G], ep,, NSVIC,

Theorem (Bagaria, Woodin)
MM™ implies BMM™*+.
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Algebraic maximality for # (X1) part /

Definition
Let B be a cba. B is SSP if whenever V|G| is a forcing extension of
V by B

(Hx,» €, NSVIC(V[ G, €p,, NSVICE]),

Definition
Strong Bounded Martin’s maximum BMM™ holds if whenever
B is an SSP cba and V|G| is a forcing extension of V by B

(Hx,, €ny, NSY<1(V ,EAO’NSV[G])

Theorem (Bagaria, Woodin)
MM™ implies BMM™*+.
MM is consistent with the existence of any axiom of large

cardinals.
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Applications of BMM™*

Assume BMM™ . Then:
o 2N — No
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Applications of BMM™*
Assume BMM™* . Then:

o 2N — No— NT
Todorcevi¢, Mathematical Research Letters, 9(2), 2006.
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Applications of BMM™*

Assume BMM™ ™. Then:
o 2No — No— NT
Todorcevi¢, Mathematical Research Letters, 9(2), 2006.
¢ Whitehead’s conjecture on free groups is false,
(i.e. there are uncountable Whitehead groups which are not

free).
Shelah, Israel Journal of Mathematics, 18(3), 1974.
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Assume BMM™* . Then:

o 2No — No— NT
Todorcevi¢, Mathematical Research Letters, 9(2), 2006.

¢ Whitehead’s conjecture on free groups is false,
(i.e. there are uncountable Whitehead groups which are not
free).
Shelah, Israel Journal of Mathematics, 18(3), 1974.

® THIS IS NOT KNOWN TO FOLLOW FROM BMM™*:
There are five uncountable linear orders such that any
uncountable linear order contains an isomorphic copy of one
of them.
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Applications of BMM™*

Assume BMM™* . Then:

o 2No — No— NT
Todorcevi¢, Mathematical Research Letters, 9(2), 2006.

¢ Whitehead’s conjecture on free groups is false,
(i.e. there are uncountable Whitehead groups which are not
free).
Shelah, Israel Journal of Mathematics, 18(3), 1974.

® THIS IS NOT KNOWN TO FOLLOW FROM BMM™*:
There are five uncountable linear orders such that any
uncountable linear order contains an isomorphic copy of one
of them.

e THIS IS NOT KNOWN TO FOLLOW FROM BMM*:
All automorphisms of the Calkin algebra are inner.
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Algebraic maximality for # (X1) part /I

 UB" denotes the family of universally Baire subsets of R
existing in V.
e NS C £ (N1) is the ideal of non-stationary subsets of Nj.

17/24



FA AlgCl FormST AlgMaxST App
oo 00000 oo 0000008000 0000

Algebraic maximality for # (X1) part /I

 UB" denotes the family of universally Baire subsets of R
existing in V.
e NS C £ (N1) is the ideal of non-stationary subsets of Nj.

17/24



FA AlgCl FormST AlgMaxST App
oo 00000 oo 0000008000 0000

Algebraic maximality for # (X1) part /I

* UB" denotes the family of universally Baire subsets of R
existing in V.
e NS C £ (N1) is the ideal of non-stationary subsets of Nj.
Definition (Woodin-Schindler?)

UB-BMM™ holds if whenever B is an SSP cba and V|G| is a
forcing extension of V by B

(Hy,»€a,-NS, A = A € UBYY<4(V[G],en,,NSVIE AVIEL . A c UBY)
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Algebraic maximality for # (X1) part /I

* UB" denotes the family of universally Baire subsets of R
existing in V.
e NS C £ (N1) is the ideal of non-stationary subsets of Nj.

Definition (Woodin-Schindler?)
UB-BMM™™ holds if whenever B is an SSP cba and V|G| is a
forcing extension of V by B

(Hy,»€a,-NS, A : A € UBVY<1(V[G],en,,NSVIE AVIEL . A c UBY)

Theorem (Woodin)
MM™ implies UB-BMM™*+.
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Algebraic maximality for # (X1) part /I

Definition (Woodin-Schindler?)
UB-BMM™™ holds if whenever B is an SSP cba and V|G| is a
forcing extension of V by B

(Hy,»€a,-NS, A : A € UBYY<1(V[G],en,, NSVIC AVIE . A c UBY)

Theorem (Woodin)
MM™ implies UB-BMM™.
(+)us is a natural strengthening of Woodin’s axiom ().

Theorem (Asperd-Schindler)

Assume there is a proper class of Woodin cardinals. Then (x)ug if
and only if UB-BMM™ ™.
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Definition (Woodin-Schindler?)
UB-BMM™™ holds if whenever B is an SSP cba and V|G| is a
forcing extension of V by B

(Hy,»€a,-NS, A : A € UBYY<1(V[G],en,, NSVIC AVIE . A c UBY)

Theorem (Woodin)
MM™ implies UB-BMM™.
(+)us is a natural strengthening of Woodin’s axiom ().

Theorem (Asperd-Schindler)

Assume there is a proper class of Woodin cardinals. Then (x)ug if
and only if UB-BMM™ ™.

17/24



FA
(e]e]

AlgCl FormST AlgMaxST App
00000 oo 0000008000 0000

Algebraic maximality for # (X1) part /I

Definition (Woodin-Schindler?)
UB-BMM™ ™ holds if whenever B is an SSP cba and V|G| is a
forcing extension of V by B

(Hy,»€a,-NS, A - A € UBYY<4(V[G],en,, NSVIC AVIEl - A c UBY)

Theorem (Asperd-Schindler)

Assume there is a proper class of Woodin cardinals. Then
Woodin’s axiom (x) holds if and only if whenever B is an SSP cba
and V|[G] is a forcing extension of V by B

(Hy,,€a,,NS, A = A isin e (R)-)y

is X1-elementary in

v

(V[G], €n,, NSVICL AVICL s in e (m)-0)7,
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Algebraic maximality for  (X1) part /Il

Recall that ¢ is a M>-sentence if it is of the form VX Ayg(X, y) with
#(X, y) quantifier free.
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Algebraic maximality for  (X1) part /Il

Recall that ¢ is a My-sentence if it is of the form VX Ay¢(X, y) with
#(X,y) quantifier free.

In signature ep, =CH can be formalized by the l>-sentence in
parameter & (the first uncountable ordinal/cardinal):

Vf[fis a function Adom(f) = &¢) = Ar(r €N Ar ¢ ran(f)]
—_— S~ —
Bo(f) Do(fN1) Do(rN)  Ag(rf)

Note that N1 € Hy,.

18/24



FA

AlgCl For mST AlgMaxST
00000 0000000e00

Algebraic maX|maI|ty for P (N) part Il

Recall that y is a Ny-sentence if it is of the form VX Ay¢(X, ) with
#(X, y) quantifier free.
Theorem (Woodin)

Assume Vopenka’s principle, Sealing, and NS is precipitous.
TFAE:

* (x)yg (or UB-BMM*™),
* For any Ny-sentences y for ep, U{R1,NS} U {A A€ UBV}

(Hyys €00s81,NS,A - A UBY Y E y

if and only if
Y is true in HXZ[G] for some forcing extension V|G| of V.

o
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Algebraic maX|maI|ty for P (N) part Il

Theorem (Woodin)

Assume Vopenka’s principle, Sealing, and NS is precipitous.
TFAE:

* (x)ug (or UB-BMM*™).
* For any Ny-sentences y for ep, U{R1,NS} U {A A€ UBV}
(among which —~CH and a strong form of 2% = K,)

<HNQ’EAO’N1,NS,A . A (S UBV> ': (ﬂ

if and only if

VI for some forcing extension V[G] of V.

Y is true in sz
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Algebraic maximality for  (X1) part /Il

Theorem (Woodin)

Assume Vopenka’s principle, Sealing, and NS is precipitous.
TFAE:

* (x)yg (or UB-BMM*™),
® For any lNy-sentences y for ep, U {N1,NS} U {A A€ UBV}

(Hy, €, N1,NS,A: Ac UB Y Ey

if and only if

VI for some forcing extension V[G] of V.

y is true in sz
Sealing can be removed by replacing UB with P(R)N for some
nice inner model N of determinacy in the formulation of BMM***
and in the relevant spots.

18/24
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Algebralc maX|maI|ty for P (N) part Il

Theorem (V.)

Assume Vopenka’s principle, Sealing, and NS is precipitous.

TFAE:
e (+)us (or UB-BMM™™).

® The theory T of the structure
M = (Hx,,€n,,81,NS,A: A e UBY)
is the model companion of the theory S of the structure

(V,en,,N1,NS,A: AeclUBY).
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Theorem (V.)

Assume Vopenka’s principle, Sealing, and NS is precipitous.

TFAE:
e (+)us (or UB-BMM™™).

® The theory T of the structure
M = (Hx,,€n,,81,NS,A: A e UBY)
is the model companion of the theory S of the structure

(V,en,,N1,NS,A: AeclUBY).
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Algebraic maximality for  (X1) part /Il

Theorem (V.)

Assume Vopenka’s principle, Sealing, and NS is precipitous.

TFAE:
o (%)us (or UB-BMM).

® The theory T of the structure
M = (Hx,,€n,.81,NS,A - A e UBY)
is the model companion of the theory S of the structure
(V,€nyN1,NS,A: A e UBY),

® [etting Syv3 be the boolean combination of existential
sentences which are in S, and ¥ be a lN2-sentence,
M models y if and only y + Sy 3 is consistent.
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Algebraic maximality for  (X1) part /Il

Theorem (V.)

Assume Vopenka’s principle, Sealing, and NS is precipitous.

TFAE:
e (+)us (or UB-BMM*™).

® For any ly-sentences y
(Hy,»€nsNS,A: AcUBY) =y

if and only if
Wy is true in HXZ[G] for some forcing extension V[G] of V.
if and only if
W + Syv3 is consistent
where S is the theory of the structure

(V,en,,N1,NS,A: AelUBY).
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Algebraic maximality for  (X1) part /Il

Theorem (V.)

Assume Vopenka’s principle, Sealing, and NS is precipitous.

TFAE:
e (+)us (or UB-BMM*™).

® The theory T of the structure
M = (Hx,,€n,.81,NS,A - A e UBY)
is the model companion of the theory S of the structure
(V,€nyN1,NS,A - A e UBY),

® [etting Syv3 be the boolean combination of existential
sentences which are in S, and ¥ be a lN2-sentence,
M models y if and only y + Sy 7 is consistent.

N
Sealing can be removed if one replaces UBY with 2 (R)(0rd™)

in the formulation of BMM**+ and in the relevant spots.
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Algebraic maximality for £ (X1)

(Hx,, €y, NS, A - A c UB")
is a substructure of
(V[G], en, NSVIEL AVIEL . A c UBY)

for all generic extension V[G] of V by an SSP-forcing

O P> Er B> E
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Algebraic maximality for # (N1)

Theory degree of algebraic closure
(Hx,,€n,, NS, )
MK is a substructure of
(V[G], €n,,NSIE], )
for all generic extension V[G] of V by an SSP-forcing
(Hx,» €y, NS, )
MK+ is a X 1-substructure of
forcing (V[G], €n,, NSVIE, )
axioms for all generic extension V[G] of V by an SSP-forcing
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Algebraic maximality for P (84)

Theory degree of algebraic closure
(Hx,» €y, NS, )
MK is a substructure of
(V[G], €n,,NSIE], )
for all generic extension V[G] of V by an SSP-forcing
(Hx,» €y, NS, )
MK+ is a X¢-substructure of
forcing (V[G], en,,NSIE], )
axioms for all generic extension V[G] of V by an SSP-forcing
MK+ for all generic extension V[G] of V the theories of
large cardinal (V[G], €n,,NSIE], )
axioms have the same model companion theory
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Algebraic maximality for P (NX4)

Theory degree of algebraic closure
(Hx,» €y, NS, )
MK is a substructure of
(V[G], en,,NSVIC], )
for all generic extension V[G] of V by an SSP-forcing
(Hx,» €n,, NS, )
MK+ is a X¢-substructure of
forcing (V[G], en,,NSIE], )
axioms for all generic extension V[G] of V by an SSP-forcing
MK+ for all generic extension V[G] of V the theories of
large cardinal (V[G], €n,,NSIE], )
axioms have the same model companion theory
for all generic extension V[G] of V the theories of
MK+ (V[G], en,, NSVIC, )
large cardinals + | have as model companion the theory of
forcing (HV2, €n,, NSV, )
axioms
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Appendix 0: Some references
A few surveys on Gddel’s program and the Continuum
problem:

e J. Bagaria, Natural axioms on set theory and the continuum
problem, CRM Preprint, 591, 2004.

® P. Koellner, On the question of absolute undecidability, in Kurt
Gobdel: essays for his centennial, Lect. Notes Log. 33, 2010.

e G. Venturi and M. Viale, What model companionship can say
about the Continuum problem, arXiv:2204.13756, 2022.

e M. Viale, Strong forcing axioms and the continuum problem, in
Séminaire Bourbaki. Volume 2022/2023. Exposés
1197-1211, 2023, (SMF).

e W. H. Woodin, The Continuum hypothesis Part I, Notices of
AMS, 48(6), 2001.

e W. H. Woodin, The Continuum hypothesis Part I, Notices of
AMS, 48(7), 2001.
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Appendix 1: Universally Baire sets

Definition

Let (X, 1) be a locally compact Polish space. A C X is universally
Baire if for all continuous f : Y — X with (Y, 0") compact Hausdorff,
f~1[A] has the Baire property in (Y, o).

23/24



FA
(e]e]

AlgCl FormST AlgMaxST App
00000 oo 0000000000 00®0

Appendix 1: Universally Baire sets
Definition
Let (X, 1) be a locally compact Polish space. A C X is universally
Baire if for all continuous f : Y — X with (Y, 0") compact Hausdorff,
f~1[A] has the Baire property in (Y, o).
Universal Baireness describes the absolutely regular sets of
reals:
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Appendix 1: Universally Baire sets
Definition
Let (X, 1) be a locally compact Polish space. A C X is universally
Baire if for all continuous f : Y — X with (Y, 0") compact Hausdorff,
f~1[A] has the Baire property in (Y, o).
Universal Baireness describes the absolutely regular sets of

reals:
Consider 2" as a closed subspace of [0; 1]. It is meager.
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Appendix 1: Universally Baire sets
Definition
Let (X, 1) be a locally compact Polish space. A C X is universally
Baire if for all continuous f : Y — X with (Y, 0") compact Hausdorff,
f~1[A] has the Baire property in (Y, o).
Universal Baireness describes the absolutely regular sets of
reals:
Consider 2" as a closed subspace of [0; 1]. It is meager.
Now take a subset P of 2 which does not have the Baire property
in 2N,
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Appendix 1: Universally Baire sets
Definition
Let (X, 1) be a locally compact Polish space. A C X is universally
Baire if for all continuous f : Y — X with (Y, 0") compact Hausdorff,
f~1[A] has the Baire property in (Y, o).
Universal Baireness describes the absolutely regular sets of
reals:
Consider 2" as a closed subspace of [0; 1]. It is meager.
Now take a subset P of 2 which does not have the Baire property
in 2N,
Seen as a subset of [0; 1], P is meager, hence it has the Baire
property,
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Appendix 1: Universally Baire sets
Definition
Let (X, 7) be a locally compact Polish space. A C X is universally
Baire if for all continuous f : Y — X with (Y, 0") compact Hausdorff,
f~1[A] has the Baire property in (Y, o).

Universal Baireness describes the absolutely regular sets of
reals:

Consider 2" as a closed subspace of [0; 1]. It is meager.

Now take a subset P of 2 which does not have the Baire property
in 2N,

Seen as a subset of [0; 1], P is meager, hence it has the Baire
property, but P is also the preimage under the inclusion map of 2!
inside [0; 1].
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Let (X, 7) be a locally compact Polish space. A C X is universally
Baire if for all continuous f : Y — X with (Y, 0") compact Hausdorff,
f~1[A] has the Baire property in (Y, o).

Universal Baireness describes the absolutely regular sets of
reals:

Consider 2" as a closed subspace of [0; 1]. It is meager.

Now take a subset P of 2 which does not have the Baire property
in 2N,

Seen as a subset of [0; 1], P is meager, hence it has the Baire
property, but P is also the preimage under the inclusion map of 2!
inside [0; 1].

This map is continuous, and the preimage of P does not have the
Baire property in 2",
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Appendix 1: Universally Baire sets
Definition
Let (X, 7) be a locally compact Polish space. A C X is universally
Baire if for all continuous f : Y — X with (Y, 0") compact Hausdorff,
f~1[A] has the Baire property in (Y, o).

Universal Baireness describes the absolutely regular sets of
reals:

Consider 2" as a closed subspace of [0; 1]. It is meager.

Now take a subset P of 2 which does not have the Baire property
in 2N,

Seen as a subset of [0; 1], P is meager, hence it has the Baire
property, but P is also the preimage under the inclusion map of 2!
inside [0; 1].

This map is continuous, and the preimage of P does not have the
Baire property in 2",

Hence P C [0; 1] is not universally Baire, even if it has the Baire
property.
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Appendix 2: Sealing

Definition (Woodin)

Given (D, W, ep,) transitive model of MK, let NV be the set

P (Hx, )L(UB)W, where L(UB)Y is the smallest transitive model of
ZF containing UBY.
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Appendix 2: Sealing

Definition (Woodin)

Given (D, W, ep,) transitive model of MK, let NV be the set

P (Hx, )L(UB)W, where L(UB)Y is the smallest transitive model of
ZF containing UBY.

(A weak form of) Sealing holds in a model (C, V, €a,) of
MK+enough large cardinals if whenever V[G] is a forcing
extension of V and V[H] a forcing extension of V[G] we have that

VG VIH
(hJV[G]aﬁﬂQ} ]’Ello)<< (PJV[H]7}ﬂ<} ]9€ZXO)
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Appendix 2: Sealing

Definition (Woodin)
Given (D, W, ep,) transitive model of MK, let NV be the set

P (Hx, )L(UB)W, where L(UB)Y is the smallest transitive model of
ZF containing UBY.

(A weak form of) Sealing holds in a model (C, V, €a,) of
MK+enough large cardinals if whenever V[G] is a forcing
extension of V and V[H] a forcing extension of V[G] we have that

(NV[G]’ H?‘;[G]’ EA0) < (NV[H]’ H;;[H]’ eAO)'

Theorem (Woodin)

Assume V models k is supercompact and there are class many
Woodin cardinals. Let V[H] be a generic extension of V where « is
countable. Then sealing holds in V[H].
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