

What Model companionship can say about the Continuum problem

Matteo Viale

Dipartimento di Matematica Università di Torino

ESTS Panel - 11/5/2023

イロト イヨト イヨト イヨト

1/24

AlgCl

FA

•0

FormST

AlgMaxST

App 0000

Section 1

Forcing axioms

The powerset of X is "as thick as possible" for given X of size κ ,

Forcing axioms for κ can be divided in two categories:

- **topological maximality:** strong forms of Baire's category theorem, generic points, MM⁺⁺.
- algebraic maximality: closure of *P*(X) under a variety of set theoretic operations for any fixed X of size κ, algebraically closed structures, Woodin's axiom (*).

- **topological maximality:** strong forms of Baire's category theorem, generic points, MM⁺⁺.
- algebraic maximality: closure of *P*(X) under a variety of set theoretic operations for any fixed X of size κ, algebraically closed structures, Woodin's axiom (*).

- **topological maximality:** strong forms of Baire's category theorem, generic points, MM⁺⁺.
- algebraic maximality: closure of *P*(X) under a variety of set theoretic operations for any fixed X of size κ, algebraically closed structures, Woodin's axiom (*).

- **topological maximality:** strong forms of Baire's category theorem, generic points, MM⁺⁺.
- algebraic maximality: closure of *P*(X) under a variety of set theoretic operations for any fixed X of size κ, algebraically closed structures, Woodin's axiom (*).

The powerset of X is "as thick as possible" for given X of size κ , Forcing axioms for κ can be divided in two categories:

- **topological maximality:** strong forms of Baire's category theorem, generic points, MM⁺⁺.
- algebraic maximality: closure of $\mathcal{P}(X)$ under a variety of set theoretic operations for any fixed X of size κ , algebraically closed structures, Woodin's axiom (*).

The talk is mainly aimed at formulating precisely the second of these two concepts.

AlgCl FormST AlgMaxST App 00000 00 000000000 0000

Forcing axioms relative to a cardinal κ :

FA

- **topological maximality:** strong forms of Baire's category theorem, generic points, MM⁺⁺.
- algebraic maximality: closure of *P*(X) under a variety of set theoretic operations for any fixed X of size κ, algebraically closed structures, Woodin's axiom (*).
- MM^{++} and (*) are forcing axioms for \aleph_1 the first uncountable cardinal.
- Baire's category theorem is a "topological" forcing axiom for \aleph_0 .
- Large cardinals entail "algebraic" forcing axioms for \aleph_0 .

AlgCl FormST AlgMaxST App 00000 00 000000000 0000

Forcing axioms relative to a cardinal κ :

FA

- **topological maximality:** strong forms of Baire's category theorem, generic points, MM⁺⁺.
- algebraic maximality: closure of *P*(X) under a variety of set theoretic operations for any fixed X of size κ, algebraically closed structures, Woodin's axiom (*).
- MM^{++} and (*) are forcing axioms for \aleph_1 the first uncountable cardinal.
- Baire's category theorem is a "topological" forcing axiom for $\aleph_0.$
- Large cardinals entail "algebraic" forcing axioms for \aleph_0 .

AlgCl FormST AlgMaxST App 00000 00 000000000 0000

Forcing axioms relative to a cardinal κ :

FA

- **topological maximality:** strong forms of Baire's category theorem, generic points, MM⁺⁺.
- algebraic maximality: closure of *P*(X) under a variety of set theoretic operations for any fixed X of size κ, algebraically closed structures, Woodin's axiom (*).
- MM^{++} and (*) are forcing axioms for \aleph_1 the first uncountable cardinal.
- Baire's category theorem is a "topological" forcing axiom for $\aleph_0.$
- Large cardinals entail "algebraic" forcing axioms for \aleph_0 .

Section 2

Algebraic closure and model companionship

App

Structures	Axioms	Example
Commutative	$\forall x, y (x \cdot y = y \cdot x)$	
semirings	$\forall x, y, z [(x \cdot y) \cdot z = x \cdot (y \cdot z)]$	
with no zero	$\forall x (x \cdot 1 = x \land 1 \cdot x = x)$	
divisors	$\forall x, y (x + y = y + x)$	
	$\forall x, y, z [(x+y) + z = x + (y+z)]$	
	$\forall \mathbf{y} (x + 0 = x \land 0 + x = x)$	\mathbb{N}
	$\forall x, y, z [(x+y) \cdot z = (x \cdot y) + (x \cdot z)]$	
	$\forall x, y [x \cdot y = 0 \rightarrow (x = 0 \lor y = 0)]$	
Integral		
	$\forall x \exists y (x+y=0)$	
	$\forall x [x \neq 0 \rightarrow \exists y (x \cdot y = 1)]$	
Algebraically	for all $n \ge 1$	
	$\forall x_0 \dots x_n \exists y \sum x_i \cdot y^i = 0$	

Structures	Axioms	Example
Commutative	$\forall x, y (x \cdot y = y \cdot x)$	
semirings	$\forall x, y, z [(x \cdot y) \cdot z = x \cdot (y \cdot z)]$	
with no zero	$\forall x (x \cdot 1 = x \land 1 \cdot x = x)$	
divisors	$\forall x, y (x + y = y + x)$	
	$\forall x, y, z [(x+y) + z = x + (y+z)]$	
	$\forall \mathbf{y} (x + 0 = x \land 0 + x = x)$	\mathbb{N}
	$\forall x, y, z [(x+y) \cdot z = (x \cdot y) + (x \cdot z)]$	
	$\forall x, y \ [x \cdot y = 0 \rightarrow (x = 0 \lor y = 0)]$	
Integral		
domains	$\forall x \exists y (x+y=0)$	Z
Fields	$\forall x [x \neq 0 \rightarrow \exists y (x \cdot y = 1)]$	Q
Algebraically	for all $n \ge 1$	
	$\forall x_0 \dots x_n \exists y \sum x_i \cdot y^i = 0$	

Structures	Axioms	Example
Commutative	$\forall x, y (x \cdot y = y \cdot x)$	
semirings	$\forall x, y, z [(x \cdot y) \cdot z = x \cdot (y \cdot z)]$	
with no zero	$\forall x (x \cdot 1 = x \land 1 \cdot x = x)$	
divisors	$\forall x, y (x + y = y + x)$	
	$\forall x, y, z [(x+y) + z = x + (y+z)]$	
	$\forall \mathbf{y} (x + 0 = x \land 0 + x = x)$	\mathbb{N}
	$\forall x, y, z [(x+y) \cdot z = (x \cdot y) + (x \cdot z)]$	
	$\forall x, y [x \cdot y = 0 \rightarrow (x = 0 \lor y = 0)]$	
Integral		
domains	$\forall x \exists y (x+y=0)$	Z
Fields	$\forall x [x \neq 0 \rightarrow \exists y (x \cdot y = 1)]$	Q
Algebraically	for all $n \ge 1$	
closed fields	$\forall x_0 \dots x_n \exists y \sum x_i \cdot y^i = 0$	

Structures	Axioms	Example
Commutative	$\forall x, y (x \cdot y = y \cdot x)$	
semirings	$\forall x, y, z [(x \cdot y) \cdot z = x \cdot (y \cdot z)]$	
with no zero	$\forall x (x \cdot 1 = x \land 1 \cdot x = x)$	
divisors	$\forall x, y (x + y = y + x)$	
	$\forall x, y, z [(x+y) + z = x + (y+z)]$	
	$\forall \mathbf{y} (x + 0 = x \land 0 + x = x)$	\mathbb{N}
	$\forall x, y, z [(x+y) \cdot z = (x \cdot y) + (x \cdot z)]$	
	$\forall x, y [x \cdot y = 0 \rightarrow (x = 0 \lor y = 0)]$	
Integral		
domains	$\forall x \exists y (x+y=0)$	Z
Fields	$\forall x [x \neq 0 \rightarrow \exists y (x \cdot y = 1)]$	Q
Algebraically	for all $n \ge 1$	
closed fields	$\forall x_0 \dots x_n \exists y \ \sum x_i \cdot y^i = 0$	C

FA	AlgCl	FormST	AlgMaxST	Арр
00	00000	00	000000000	0000

$\langle \mathbb{Z}, +, \cdot, 0, 1 \rangle \quad \sqsubseteq \quad \langle \mathbb{C}, +, \cdot, 0, 1 \rangle \quad \sqsubseteq \quad \langle \mathbb{C}[X], +, \cdot, 0, 1 \rangle$

FA	AlgCl	FormST	AlgMaxST	App
00	00000	00	000000000	0000

$$\begin{array}{lll} \langle \mathbb{Z},+,\cdot,0,1\rangle & \sqsubseteq & \langle \mathbb{C},+,\cdot,0,1\rangle & \sqsubseteq & \langle \mathbb{C}[X],+,\cdot,0,1\rangle \\ \\ \langle \mathbb{Z},+,\cdot,0,1\rangle & \not<_1 & \langle \mathbb{C},+,\cdot,0,1\rangle & \prec_1 & \langle \mathbb{C}[X],+,\cdot,0,1\rangle \\ \\ & \exists x \, (x^2-2=0)? & \exists x \, (x^3+2x+i=0)? \end{array}$$

4 ロト 4 団ト 4 巨ト 4 巨ト 三 のへで 6/24

FA	AlgCl	FormST	AlgMaxST	Арр
00	0000	00	000000000	0000

$\langle \mathbb{Z}, +, \cdot, 0, 1 \rangle \hspace{1cm} \sqsubseteq \hspace{1cm} \langle \mathbb{C}, +, \cdot, 0, 1 \rangle \hspace{1cm} \sqsubseteq \hspace{1cm} \langle \mathbb{C}[X], +, \cdot, 0, 1 \rangle$

 $\langle \mathbb{Z}, +, \cdot, 0, 1 \rangle \qquad \not\prec_1 \qquad \langle \mathbb{C}, +, \cdot, 0, 1 \rangle \qquad \prec_1 \qquad \langle \mathbb{C}[X], +, \cdot, 0, 1 \rangle$

Definition

Given a vocabulary τ and τ -structures $\mathcal{M} \sqsubseteq \mathcal{N}$, $\mathcal{M} \prec_1 \mathcal{N}$ if every Σ_1 -formula with parameters in \mathcal{M} and true in \mathcal{N} is true also in \mathcal{M} .

FA	AlgCl	FormST	AlgMaxST	Арр
00	00000	00	000000000	0000

$\langle \mathbb{Z}, +, \cdot, 0, 1 \rangle \quad \sqsubseteq \quad \langle \mathbb{C}, +, \cdot, 0, 1 \rangle \quad \sqsubseteq \quad \langle \mathbb{C}[X], +, \cdot, 0, 1 \rangle$

 $\langle \mathbb{Z}, +, \cdot, 0, 1 \rangle \quad \not\prec_1 \quad \langle \mathbb{C}, +, \cdot, 0, 1 \rangle \quad \prec_1 \quad \langle \mathbb{C}[X], +, \cdot, 0, 1 \rangle$

Definition

Given a vocabulary τ and τ -structures $\mathcal{M} \sqsubseteq \mathcal{N}, \mathcal{M} \prec_1 \mathcal{N}$ if every Σ_1 -formula with parameters in \mathcal{M} and true in \mathcal{N} is true also in \mathcal{M} .

A *τ*-formula φ(x₁,..., x_n) is quantifier free if it is a boolean combination of atomic formulae.

A *τ*-formula φ(x₁,..., x_n) is quantifier free if it is a boolean combination of atomic formulae.

Example

In the vocabulary $\{+, \cdot, 0, 1\}$, the atomic formulae are diophantine equations and the quantifier free formulae with parameters in a ring \mathcal{M} define the constructible sets (in the sense of algebraic geometry) of \mathcal{M} :

$$\bigvee_{j=1}^{l} \left[\bigwedge_{i=1}^{k_j} p_{ij}(a_1^{ij}, \ldots, a_{m_{ij}}^{ij}, x_1, \ldots, x_n) = 0 \land \bigwedge_{d=1}^{m_j} \neg q_{dj}(b_1^{dj}, \ldots, b_{k_dj}^{dj}, x_1, \ldots, x_n) = 0 \right]$$

with each a_k^{ij} , b_k^{dj} elements of \mathcal{M} and $p_{ij}(y_1, \ldots, y_{m_{ij}}, x_1, \ldots, x_n) = 0$, $q_{dj}(z_1, \ldots, z_{k_dj}, x_1, \ldots, x_n) = 0$ diophantine equations (of degree 1 in the y_l, z_h -s).

FA	AlgCl	FormST	AlgMaxST	Арр
00	00000	00	000000000	0000

 $\langle \mathbb{Z}, +, \cdot, 0, 1 \rangle \hspace{0.5cm} \sqsubseteq \hspace{0.5cm} \langle \mathbb{C}, +, \cdot, 0, 1 \rangle \hspace{0.5cm} \sqsubseteq \hspace{0.5cm} \langle \mathbb{C}[X], +, \cdot, 0, 1 \rangle$

 $\langle \mathbb{Z}, +, \cdot, 0, 1 \rangle \quad \not\prec_1 \quad \langle \mathbb{C}, +, \cdot, 0, 1 \rangle \quad \prec_1 \quad \langle \mathbb{C}[X], +, \cdot, 0, 1 \rangle$

Definition

Given a vocabulary τ and τ -structures $\mathcal{M} \subseteq \mathcal{N}$, $\mathcal{M} \prec_1 \mathcal{N}$ if every Σ_1 -formula with parameters in \mathcal{M} and true in \mathcal{N} is true also in \mathcal{M} .

- A *τ*-formula φ(x₁,..., x_n) is quantifier free if it is a boolean combination of atomic formulae.
- A τ -formula $\psi(x_0, \ldots, x_n)$ is a Σ_1 -formula if it is of the form $\exists y_0, \ldots, y_k \phi(y_0, \ldots, y_k, x_0, \ldots, x_n)$ with $\phi(y_0, \ldots, y_k, x_0, \ldots, x_n)$ quantifier free.

FA	AlgCl	FormST	AlgMaxST	Арр
00	00000	00	000000000	0000

 $\langle \mathbb{Z}, +, \cdot, 0, 1 \rangle \qquad \not\prec_1 \qquad \langle \mathbb{C}, +, \cdot, 0, 1 \rangle \qquad \prec_1 \qquad \langle \mathbb{C}[X], +, \cdot, 0, 1 \rangle$

Definition

Given a vocabulary τ and τ -structures $\mathcal{M} \sqsubseteq \mathcal{N}, \mathcal{M} \prec_1 \mathcal{N}$ if every Σ_1 -formula with parameters in \mathcal{M} and true in \mathcal{N} is true also in \mathcal{M} .

• A τ -formula $\psi(x_0, \ldots, x_n)$ is a Σ_1 -formula if it is of the form $\exists y_0, \ldots, y_k \phi(y_0, \ldots, y_k, x_0, \ldots, x_n)$ with $\phi(y_0, \ldots, y_k, x_0, \ldots, x_n)$ quantifier free.

Definition

Given a τ -theory **S**, a τ -structure \mathcal{M} is **S**-ec if:

- there is a model of $S \mathcal{N} \supseteq \mathcal{M}$,
- $\mathcal{M}_{1}\mathcal{N}$ for any $\mathcal{N} \supseteq \mathcal{M}$ which models S.

・ロト ・ 日 ト ・ 日 ト ・ 日 ト ・ 日

FA	AlgCl	FormST	AlgMaxST	Арр
00	00000	00	000000000	0000

 $\langle \mathbb{Z}, +, \cdot, 0, 1 \rangle \quad \sqsubseteq \quad \langle \mathbb{C}, +, \cdot, 0, 1 \rangle \quad \sqsubseteq \quad \langle \mathbb{C}[X], +, \cdot, 0, 1 \rangle$

Definition

Given a vocabulary τ and τ -structures $\mathcal{M} \sqsubseteq \mathcal{N}, \mathcal{M} \prec_1 \mathcal{N}$ if every Σ_1 -formula with parameters in \mathcal{M} and true in \mathcal{N} is true also in \mathcal{M} .

Definition

Given a τ -theory **S**, a τ -structure \mathcal{M} is **S**-ec if:

- there is a model of $S \mathcal{N} \supseteq \mathcal{M}$,
- $\mathcal{M}_{1}\mathcal{N}$ for any $\mathcal{N} \supseteq \mathcal{M}$ which models S.

Example

For *S* the $\{+, \cdot, 0, 1\}$ -theory of integral domains the algebraically closed fields are the *S*-ec models.

FA	AlgCl	FormST	AlgMaxST	Арр
00	0000	00	000000000	0000

 $\langle \mathbb{Z}, +, \cdot, 0, 1 \rangle \qquad \not\prec_1 \qquad \langle \mathbb{C}, +, \cdot, 0, 1 \rangle \qquad \prec_1 \qquad \langle \mathbb{C}[X], +, \cdot, 0, 1 \rangle$

Definition

Given a vocabulary τ and τ -structures $\mathcal{M} \sqsubseteq \mathcal{N}, \mathcal{M} \prec_1 \mathcal{N}$ if every Σ_1 -formula with parameters in \mathcal{M} and true in \mathcal{N} is true also in \mathcal{M} .

Definition

Given a τ -theory S, a τ -structure \mathcal{M} is S-ec if:

- there is a model of $S \mathcal{N} \supseteq \mathcal{M}$,
- $\mathcal{M} \prec_1 \mathcal{N}$ for any $\mathcal{N} \sqsupseteq \mathcal{M}$ which models S.

Example

For *S* the $\{+, \cdot, 0, 1\}$ -theory of integral domains the algebraically closed fields are the *S*-ec models.

FA	AlgCl	FormST	AlgMaxST	Арр
00	0000	00	000000000	0000

Definition

Given a τ -theory **S**, a τ -structure \mathcal{M} is **S**-ec if:

- there is a model of $S \mathcal{N} \supseteq \mathcal{M}$,
- $\mathcal{M}_{1}\mathcal{N}$ for any $\mathcal{N} \supseteq \mathcal{M}$ which models S.

Definition

Given a τ -theory S, a τ -theory T is the *model companion* of S if TFAE for any τ -structure M:

- \mathcal{M} is a model of \mathcal{T} ,
- *M* is **S**-ec.

FA	AlgCl	FormST	AlgMaxST	Арр
00	00000	00	000000000	0000

Definition

Given a τ -theory **S**, a τ -structure \mathcal{M} is **S**-ec if:

- there is a model of $S \mathcal{N} \supseteq \mathcal{M}$,
- $\mathcal{M} \prec_1 \mathcal{N}$ for any $\mathcal{N} \sqsupseteq \mathcal{M}$ which models S.

Definition

Given a τ -theory **S**, a τ -theory **T** is the *model companion* of **S** if TFAE for any τ -structure \mathcal{M} :

- \mathcal{M} is a model of \mathcal{T} ,
- *M* is **S**-ec.

Example

The $\{+, \cdot, 0, 1\}$ -theory of integral domains has the $\{+, \cdot, 0, 1\}$ -theory of algebraically closed fields as its model companion.

FA	AlgCl	FormST	AlgMaxST	Арр
00	00000	00	000000000	0000

Every mathematical theory can be axiomatized in first order logic by suitably choosing the vocabulary for its basic concepts.

FA	AlgCl	FormST	AlgMaxST	Арр
00	00000	00	000000000	0000

Every mathematical theory can be axiomatized in first order logic by suitably choosing the vocabulary for its basic concepts. Consider Group Theory

FA	AlgCl	FormST	AlgMaxST	Арр
00	00000	00	000000000	0000

Axioms of groups in $\{\cdot, e\}$ $\forall x, y, z [(x \cdot y) \cdot z = x \cdot (y \cdot z)],$ $\forall y (e \cdot y = y \land y \cdot e = y),$ $\forall x \exists y [x \cdot y = e \land y \cdot x = e].$

FA	AlgCl	FormST	AlgMaxST	Арр
00	00000	00	000000000	0000

Axioms of groups in $\{\cdot, e\}$

$$\begin{aligned} \forall x, y, z \left[(x \cdot y) \cdot z = x \cdot (y \cdot z) \right], \\ \forall y \left(e \cdot y = y \land y \cdot e = y \right), \\ \forall x \exists y \left[x \cdot y = e \land y \cdot x = e \right]. \end{aligned}$$

Axioms of groups in $\{R, e\}$ with R a ternary relation symbol $\forall x, y \exists ! z R(x, y, z),$ $\forall x, y, z, w, t [((R(x, y, w) \land R(y, z, t)) \rightarrow \exists u (R(x, t, u) \land R(w, z, u))],$ $\forall y [R(e, y, y) \land R(y, e, y)],$ $\forall x \exists y [R(x, y, e) \land R(y, x, e)].$

イロト イヨト イヨト イヨト 三日

Axioms of groups in $\{\cdot, e\}$

$$\begin{aligned} \forall x, y, z \left[(x \cdot y) \cdot z = x \cdot (y \cdot z) \right], \\ \forall y \left(e \cdot y = y \land y \cdot e = y \right), \\ \forall x \exists y \left[x \cdot y = e \land y \cdot x = e \right]. \end{aligned}$$

Axioms of groups in $\{R, e\}$ with R a ternary relation symbol $\forall x, y \exists ! z R(x, y, z),$

 $\begin{aligned} \forall x, y, z, w, t \left[\left(\left(R(x, y, w) \land R(y, z, t) \right) \rightarrow \exists u \left(R(x, t, u) \land R(w, z, u) \right) \right], \\ \forall y \left[R(e, y, y) \land R(y, e, y) \right], \end{aligned}$

 $\forall x \exists y [R(x, y, e) \land R(y, x, e)].$

The two axiomatizions are equivalent in the vocabulary $\{R, \cdot, e\}$, modulo the axiom

$$\forall x, y, z \left(R(x, y, z) \leftrightarrow x \cdot y = z \right)$$

Standard axiomatization of sets in textbooks is done in vocabulary $\{\in\}$, eventually with extra symbol \subseteq .

Standard axiomatization of sets in textbooks is done in vocabulary $\{\in\}$, eventually with extra symbol \subseteq .

Formalizing in the $\{\in\}$ -vocabulary the notion of ordered pair: **Kuratowski's trick:** $\langle y, z \rangle$ is coded in set theory by the set $\{\{y\}, \{y, z\}\}$.

Standard axiomatization of sets in textbooks is done in vocabulary $\{\in\}$, eventually with extra symbol \subseteq .

Formalizing in the { \in }-vocabulary the notion of ordered pair: **Kuratowski's trick:** $\langle y, z \rangle$ is coded in set theory by the set { $\{y\}, \{y, z\}$ }. In set theory the standard \in -formula expressing $x = \langle y, z \rangle$ is

 $\exists t \exists u \, [\forall w \, (w \in x \leftrightarrow w = t \lor w = u) \land \forall v \, (v \in t \leftrightarrow v = y) \land \forall v \, (v \in u \leftrightarrow v = y \lor v = z)].$

The vocabulary \in_{Δ_0} for set theory

- constants for Ø, N,
- relation symbols R_{ϕ} for any lightface Δ_0 -property $\phi(x_1, \ldots, x_n)$,
- function symbols for a finite list of basic set theoretic constructors.

Lightface Δ_0 -properties

- $\{R \in V : R \text{ is an } n \text{-ary relation}\},\$
- $\{f \in V : f \text{ is a function}\},\$
- $\{\langle a,b\rangle\in V^2:a\subseteq b\},\$
- ...
- {⟨a₁,..., a_n⟩ ∈ Vⁿ : (V, ∈) ⊨ φ(a₁,..., a_n)} for any ∈-formula φ(x₁,..., x_n) where quantified variables are bounded to range in a set.

AlgCl	FormST	AlgMaxST	Арр
00000	00	000000000	0000

Lightface Δ_0 -properties

- $\{R \in V : R \text{ is an } n \text{-ary relation}\},\$
- $\{f \in V : f \text{ is a function}\},\$

•
$$\{\langle a,b\rangle\in V^2:a\subseteq b\}$$

• ...

• { $\langle a_1, \ldots, a_n \rangle \in V^n : (V, \in) \models \phi(a_1, \ldots, a_n)$ } for any \in -formula $\phi(x_1, \ldots, x_n)$ where quantified variables are bounded to range in a set (e.g. $y \subseteq z \equiv \forall x (x \in y \rightarrow x \in z) \equiv \forall x \in y (x \in z)$).

The *lightface* Δ_0 *-properties* are those described in the last item above and include all those listed in some of the above items.

App 0000

The right vocabulary for set theory

Lightface Δ_0 -properties

- $\{R \in V : R \text{ is an } n \text{-ary relation}\},\$
- $\{f \in V : f \text{ is a function}\},\$
- $\{\langle a,b\rangle\in V^2:a\subseteq b\},\$
- ...
- {⟨a₁,..., a_n⟩ ∈ Vⁿ : (V, ∈) ⊨ φ(a₁,..., a_n)} for any ∈-formula φ(x₁,..., x_n) where quantified variables are bounded to range in a set.

Complicated set theoretic relations

•
$$\{\langle X, Y \rangle \in V^2 : |X| = |Y|\},$$

•
$$\{\langle X, Y \rangle \in V^2 : X = \mathcal{P}(Y)\},\$$

• ...

• any relation which is not a Δ_1 -property

イロト イヨト イヨト イヨト 二日

Complicated set theoretic relations

•
$$\{\langle X, Y \rangle \in V^2 : |X| = |Y|\},\$$

•
$$\{\langle X, Y \rangle \in V^2 : X = \mathcal{P}(Y)\},\$$

- . . .
- any relation which is not a Δ_1 -property ($\Delta_0 \subseteq \Delta_1$).

Basic set theoretic operations

- π_j^n : $\langle a_1, \ldots, a_n \rangle \mapsto a_j$,
- $\langle X, Y \rangle \mapsto X \times Y$,
- $\langle X, Y \rangle \mapsto \{X, Y\},$
- . . .
- Any provably total function whose graph is a lightface Δ₀-property.

The vocabulary \in_{Δ_0} for set theory

- constants for Ø, ℕ,
- relation symbols R_{ϕ} for any lightface Δ_0 -property $\phi(x_1, \ldots, x_n)$,
- function symbols for a finite list of basic set theoretic constructors.

Basic set theoretic operations

- $\pi_j^n: \langle a_1, \ldots, a_n \rangle \mapsto a_j,$
- $\langle X, Y \rangle \mapsto X \times Y$,
- $\langle X, Y \rangle \mapsto \{X, Y\},$
- . . .
- Any provably total function whose graph is a lightface Δ_0 -property.

The vocabulary \in_{Δ_0} for set theory

- constants for Ø, ℕ,
- relation symbols R_{ϕ} for any lightface Δ_0 -property $\phi(x_1, \ldots, x_n)$,
- function symbols for a finite list of basic set theoretic constructors.

Lightface Δ_0 -properties

$$\{\langle a_1,\ldots,a_n\rangle\in V^n: (V,\epsilon)\models\phi(a_1,\ldots,a_n)\}$$

for any \in -formula $\phi(x_1, \ldots, x_n)$ where quantified variables are bounded to range in a set.

Basic set theoretic operations

Any total function whose graph is a lightface Δ_0 -property.

AlgCl

FormST • 0 AlgMaxST

App 0000

Section 3

Formalization of set theory

4 ロ ト 4 日 ト 4 王 ト 4 王 ト 4 王 今 9 (24
9/24

Axioms of Morse-Kelley Set Theory in $\in_{\Delta_0} \cup \{\text{Set}, V\}$

Notational convention: smallcase variables indicate sets, uppercase variables indicate classes.

Universal axioms

- Extensionality: $\forall X, Y [(X \subseteq Y \land Y \subseteq X) \leftrightarrow X = Y].$
- Comprehension: $\forall X (Set(X) \leftrightarrow X \in V) \land \forall X (X \subseteq V).$
- Foundation:

 $\forall F[(F \text{ is a function } \land \operatorname{dom}(F) = \mathbb{N}) \rightarrow \exists n \in \mathbb{N} F(n+1) \notin F(n)].$

FA	AlgCl	FormST	AlgMaxST	Арр
00	00000	0.	000000000	0000

Axioms of Morse-Kelley Set Theory in $\in_{\Delta_0} \cup \{\text{Set}, V\}$

Existence Axioms:

- Emptyset: $(\forall x \ x \notin \emptyset) \land (\emptyset \in V)$,
- Infinity:

 $\operatorname{Set}(\mathbb{N}) \land \forall x \, [x \in \mathbb{N} \leftrightarrow (x \text{ is a finite Von Neumann ordinal})].$

FA	AlgCl	FormST	AlgMaxST	Арр
00	00000	0•	000000000	0000

Axioms of Morse-Kelley Set Theory in $\in_{\Delta_0} \cup \{\text{Set}, V\}$

Basic construction principles:

- Union and Pair: $\forall X, Y, w [w \in X \cup Y \leftrightarrow (w \in X \lor w \in Y)], \dots$
- Separation: $\forall P, x [(x \in V) \rightarrow (P \cap x) \in V].$

	AlgCl	FormST	AlgMaxST	Арр
)	00000	0•	000000000	0000

Axioms of Morse-Kelley Set Theory in $\in_{\Delta_0} \cup \{\text{Set}, V\}$ Strong construction principles:

• Comprehension (b): For every \in_{Δ_0} -formula $\psi(\vec{x}, \vec{Y})$

 $\forall \vec{Y} \exists Z \forall x [x \in Z \leftrightarrow (x \in V \land \exists x_0, \dots, x_n (x = \langle x_0, \dots, x_n \rangle \land \psi(x_0, \dots, x_n, \vec{Y})))].$

Replacement:

 $\forall F, x [(F \text{ is a function } \land (x \in V) \land (x \subseteq \text{dom}(F))) \rightarrow (F[x] \in V)].$

Powerset:

$$\forall x [(x \in V) \rightarrow [\forall z (z \in \mathcal{P}(X) \leftrightarrow z \subseteq x) \land \mathcal{P}(x) \in V]].$$

Choice:

AlgCl

FormST

AlgMaxST •000000000 **App** 0000

Section 4

Algebraic maximality for set theory

< □ ▶ < 圕 ▶ < ≧ ▶ < ≧ ▶ = りへで 11/24

Existentially closed structures for set theory

Theorem (Levy)

Let κ be an infinite cardinal. Then

$$\langle H_{\kappa^{+}}, \in_{\Delta_{0}}, A : A \subseteq \mathcal{P}(\kappa) \rangle \prec_{1} \langle V, \in_{\Delta_{0}}, A : A \subseteq \mathcal{P}(\kappa) \rangle$$

Theorem (Levy)

Let κ be an infinite cardinal. Then

$$\langle H_{\kappa^+}, \in_{\Delta_0}, A : A \subseteq \mathcal{P}(\kappa) \rangle \prec_1 \langle V, \in_{\Delta_0}, A : A \subseteq \mathcal{P}(\kappa) \rangle.$$

・ロト () + () - (

Theorem (Levy)

Let κ be an infinite cardinal. Then

$$\langle H_{\kappa^+}, \in_{\Delta_0}, A : A \subseteq \mathcal{P}(\kappa) \rangle \prec_1 \langle V, \in_{\Delta_0}, A : A \subseteq \mathcal{P}(\kappa) \rangle$$

Theorem (Shoenfield, 1961) Let V[G] be a forcing extension of V. Then

 $\langle H_{\aleph_1}, \in_{\Delta_0} \rangle \prec_1 \langle V[G], \in_{\Delta_0} \rangle.$

<ロト<部ト<基ト<基ト<基ト 13/24

- UB^V denotes the family of universally Baire subsets of ℝ existing in V.
- (modulo a Borel isomorphism) ℝ ≈ 𝒫(ℕ) ≈ 2^ℕ and UB is a family of subsets of 𝒫(ℕ).
- Every univ. Baire set A of V can be naturally lifted to a univ.
 Baire set A^{V[G]} of V[G] for any forcing extension V[G] of V.

- UB^V denotes the family of universally Baire subsets of ℝ existing in V.
- (modulo a Borel isomorphism) ℝ ≈ 𝒫(ℕ) ≈ 2^ℕ and UB is a family of subsets of 𝒫(ℕ).
- Every univ. Baire set A of V can be naturally lifted to a univ.
 Baire set A^{V[G]} of V[G] for any forcing extension V[G] of V.

Theorem (Feng-Magidor-Woodin, 1992) Let V[G] be a forcing extension of V. Then

 $\langle H_{\aleph_1}, \in_{\Delta_0}, A : A \in \mathsf{UB}^V \rangle \prec_1 \langle V[G], \in_{\Delta_0}, A^{V[G]} : A \in \mathsf{UB}^V \rangle.$

Theorem (Levy)

Let κ be an infinite cardinal. Then

$$\langle H_{\kappa^+}, \in_{\Delta_0}, A : A \subseteq \mathcal{P}(\kappa) \rangle \prec_1 \langle V, \in_{\Delta_0}, A : A \subseteq \mathcal{P}(\kappa) \rangle.$$

Theorem (Shoenfield, 1961) Let V[G] be a forcing extension of V. Then

$$\langle H_{\aleph_1}, \in_{\Delta_0} \rangle \prec_1 \langle V[G], \in_{\Delta_0} \rangle.$$

Theorem (Feng-Magidor-Woodin, 1992) Let V[G] be a forcing extension of V. Then

 $\langle H_{\aleph_1}, \in_{\Delta_0}, A : A \in UB^V \rangle \prec_1 \langle V[G], \in_{\Delta_0}, A^{V[G]} : A \in UB^V \rangle.$

イロト イヨト イヨト イヨト 三日

- UB^V denotes the family of universally Baire subsets of ℝ existing in V.
- (modulo a Borel isomorphism) ℝ ≈ 𝒫(ℕ) ≈ 2^ℕ and UB is a family of subsets of 𝒫(ℕ).
- Every univ. Baire set A of V can be naturally lifted to a univ.
 Baire set A^{V[G]} of V[G] for any forcing extension V[G] of V.

• UB^V denotes the family of universally Baire subsets of \mathbb{R}

AlgMaxST

- UB^V denotes the family of universally Baire subsets of ℝ existing in V.
- (modulo a Borel isomorphism) ℝ ≈ 𝒫(ℕ) ≈ 2^ℕ and UB is a family of subsets of 𝒫(ℕ).
- Every univ. Baire set A of V can be naturally lifted to a univ.
 Baire set A^{V[G]} of V[G] for any forcing extension V[G] of V.

Theorem (Woodin, 1985+Martin-Steel, 1989+ V.-Venturi, 2020)

Assume there is a proper class of Woodin's cardinals. Then the theory of

 $\langle H_{\aleph_1}, \in_{\Delta_0}, A : A \in \mathsf{UB}^V \rangle$

is the model companion of the theory of

$$\langle V[G], \in_{\Delta_0}, A^{V[G]} : A \in UB^V \rangle$$

for any forcing extension V[G] of V.

・ロト ・ 日 ト ・ 日 ト ・ 日 ト ・ 日

Algebraic maximality for $\mathcal{P}(\mathbb{N})$

Theory	degree of algebraic closure
МК	$\langle H_{\aleph_1}, \in_{\Delta_0}, A : A \in UB^V \rangle$ is Σ_1 -elementary in $\langle V[G], \in_{\Delta_0}, A^{V[G]} : A \in UB^V \rangle$ for all generic extension $V[G]$ of V
MK+ large cardinal axioms	The theory of $\langle H_{\aleph_1}, \in_{\Delta_0}, A : A \in UB^V \rangle$ is the model companion of the theory of $\langle V[G], \in_{\Delta_0}, A^{V[G]} : A \in UB^V \rangle$ for all generic extension $V[G]$ of V

Algebraic maximality for $\mathcal{P}(\mathbb{N})$

Theory	degree of algebraic closure
МК	$\langle H_{\aleph_1}, \in_{\Delta_0}, A : A \in UB^V \rangle$ is Σ_1 -elementary in $\langle V[G], \in_{\Delta_0}, A^{V[G]} : A \in UB^V \rangle$ for all generic extension $V[G]$ of V
MK+ large cardinal axioms	The theory of $\langle H_{\aleph_1}, \in_{\Delta_0}, A : A \in UB^V \rangle$ is the model companion of the theory of $\langle V[G], \in_{\Delta_0}, A^{V[G]} : A \in UB^V \rangle$ for all generic extension $V[G]$ of V

Algebraic maximality for $\mathcal{P}(\aleph_1)$ part *I*

• NS $\subseteq \mathcal{P}(\aleph_1)$ is the ideal of non-stationary subsets of \aleph_1 .

Algebraic maximality for $\mathcal{P}(\aleph_1)$ part *I*

• NS $\subseteq \mathcal{P}(\aleph_1)$ is the ideal of non-stationary subsets of \aleph_1 .

Definition

Let B be a cba. B is SSP if whenever V[G] is a forcing extension of V by B

 $\langle H_{\aleph_2}, \in_{\Delta_0}, \mathsf{NS}^V \rangle \sqsubseteq \langle V[G], \in_{\Delta_0}, \mathsf{NS}^{V[G]} \rangle.$

Algebraic maximality for $\mathcal{P}(\aleph_1)$ part *I*

• NS $\subseteq \mathcal{P}(\aleph_1)$ is the ideal of non-stationary subsets of \aleph_1 .

Definition

Let B be a cba. B is SSP if whenever V[G] is a forcing extension of V by B

$$\langle H_{\aleph_2}, \in_{\Delta_0}, \mathsf{NS}^V \rangle \sqsubseteq \langle V[G], \in_{\Delta_0}, \mathsf{NS}^{V[G]} \rangle.$$

Definition

Strong Bounded Martin's maximum BMM⁺⁺ holds if whenever B is an SSP cba and V[G] is a forcing extension of V by B

 $\langle H_{\aleph_2}, \in_{\Delta_0}, \mathsf{NS} \rangle \prec_1 \langle V[G], \in_{\Delta_0}, \mathsf{NS}^{V[G]} \rangle.$

IST

Algebraic maximality for $\mathcal{P}(\aleph_1)$ part *I*

• NS $\subseteq \mathcal{P}(\aleph_1)$ is the ideal of non-stationary subsets of \aleph_1 .

Definition

Let B be a cba. B is SSP if whenever V[G] is a forcing extension of V by B

 $\langle H_{\aleph_2}, \in_{\Delta_0}, \mathsf{NS}^V \rangle \sqsubseteq \langle V[G], \in_{\Delta_0}, \mathsf{NS}^{V[G]} \rangle.$

Definition

Strong Bounded Martin's maximum BMM⁺⁺ holds if whenever B is an SSP cba and V[G] is a forcing extension of V by B

$$\langle H_{\aleph_2}, \in_{\Delta_0}, \mathsf{NS} \rangle \prec_1 \langle V[G], \in_{\Delta_0}, \mathsf{NS}^{V[G]} \rangle.$$

Theorem (Bagaria, Woodin) MM⁺⁺ *implies* BMM⁺⁺.

Algebraic maximality for $\mathcal{P}(\aleph_1)$ part *I*

Definition

Let B be a cba. B is SSP if whenever V[G] is a forcing extension of V by B

 $\langle H_{\aleph_2}, \in_{\Delta_0}, \mathsf{NS}^V \rangle \sqsubseteq \langle V[G], \in_{\Delta_0}, \mathsf{NS}^{V[G]} \rangle.$

Definition

Strong Bounded Martin's maximum BMM⁺⁺ holds if whenever B is an SSP cba and V[G] is a forcing extension of V by B

 $\langle H_{\aleph_2}, \in_{\Delta_0}, \mathsf{NS} \rangle \leq_1 \langle V[G], \in_{\Delta_0}, \mathsf{NS}^{V[G]} \rangle.$

Theorem (Bagaria, Woodin)

MM⁺⁺ implies BMM⁺⁺.

 MM^{++} is consistent with the existence of any axiom of large cardinals.

App 0000

Applications of BMM⁺⁺

Assume BMM⁺⁺. Then:

• $2^{\aleph_0} = \aleph_2 = \aleph_1^+$

Todorčević, Mathematical Research Letters, 9(2), 2006.

• Whitehead's conjecture on free groups is false, (i.e. there are uncountable Whitehead groups which are not free).

- THIS IS NOT KNOWN TO FOLLOW FROM BMM⁺⁺: There are five uncountable linear orders such that any uncountable linear order contains an isomorphic copy of one of them.
- THIS IS NOT KNOWN TO FOLLOW FROM BMM⁺⁺: All automorphisms of the Calkin algebra are inner.

App 0000

Applications of BMM⁺⁺

Assume BMM⁺⁺. Then:

• $2^{\aleph_0} = \aleph_2 = \aleph_1^+$.

Todorčević, Mathematical Research Letters, 9(2), 2006.

 Whitehead's conjecture on free groups is false, (i.e. there are uncountable Whitehead groups which are not free).

- THIS IS NOT KNOWN TO FOLLOW FROM BMM⁺⁺: There are five uncountable linear orders such that any uncountable linear order contains an isomorphic copy of one of them.
- THIS IS NOT KNOWN TO FOLLOW FROM BMM⁺⁺: All automorphisms of the Calkin algebra are inner.

Applications of BMM⁺⁺

Assume BMM⁺⁺. Then:

• $2^{\aleph_0} = \aleph_2 = \aleph_1^+$.

Todorčević, Mathematical Research Letters, 9(2), 2006.

• Whitehead's conjecture on free groups is false, (i.e. there are uncountable Whitehead groups which are not free).

- THIS IS NOT KNOWN TO FOLLOW FROM BMM⁺⁺: There are five uncountable linear orders such that any uncountable linear order contains an isomorphic copy of one of them.
- THIS IS NOT KNOWN TO FOLLOW FROM BMM⁺⁺: All automorphisms of the Calkin algebra are inner.

App

Applications of BMM⁺⁺

Assume BMM⁺⁺. Then:

• $2^{\aleph_0} = \aleph_2 = \aleph_1^+$.

Todorčević, Mathematical Research Letters, 9(2), 2006.

• Whitehead's conjecture on free groups is false, (i.e. there are uncountable Whitehead groups which are not free).

- THIS IS NOT KNOWN TO FOLLOW FROM BMM⁺⁺: There are five uncountable linear orders such that any uncountable linear order contains an isomorphic copy of one of them.
- THIS IS NOT KNOWN TO FOLLOW FROM BMM⁺⁺: All automorphisms of the Calkin algebra are inner.

App

Applications of BMM⁺⁺

Assume BMM⁺⁺. Then:

• $2^{\aleph_0} = \aleph_2 = \aleph_1^+$.

Todorčević, Mathematical Research Letters, 9(2), 2006.

• Whitehead's conjecture on free groups is false, (i.e. there are uncountable Whitehead groups which are not free).

- THIS IS NOT KNOWN TO FOLLOW FROM BMM⁺⁺: There are five uncountable linear orders such that any uncountable linear order contains an isomorphic copy of one of them.
- THIS IS NOT KNOWN TO FOLLOW FROM BMM⁺⁺: All automorphisms of the Calkin algebra are inner.

Algebraic maximality for $\mathcal{P}(\aleph_1)$ part II

- UB^V denotes the family of universally Baire subsets of ℝ existing in V.
- NS $\subseteq \mathcal{P}(\aleph_1)$ is the ideal of non-stationary subsets of \aleph_1 .

Algebraic maximality for $\mathcal{P}(\aleph_1)$ part II

- UB^V denotes the family of universally Baire subsets of ℝ existing in V.
- NS $\subseteq \mathcal{P}(\aleph_1)$ is the ideal of non-stationary subsets of \aleph_1 .

App 0000

Algebraic maximality for $\mathcal{P}(\aleph_1)$ part II

- UB^V denotes the family of universally Baire subsets of ℝ existing in V.
- NS $\subseteq \mathcal{P}(\aleph_1)$ is the ideal of non-stationary subsets of \aleph_1 .

Definition (Woodin-Schindler?)

UB-BMM⁺⁺ holds if whenever B is an SSP cba and V[G] is a forcing extension of V by B

 $\langle H_{\aleph_2}, \in_{\Delta_0}, \mathsf{NS}, \mathsf{A} : \mathsf{A} \in \mathsf{UB}^V \rangle \prec_1 \langle \mathsf{V}[G], \in_{\Delta_0}, \mathsf{NS}^{\mathsf{V}[G]}, \mathsf{A}^{\mathsf{V}[G]} : \mathsf{A} \in \mathsf{UB}^V \rangle$

Algebraic maximality for $\mathcal{P}(\aleph_1)$ part II

- UB^V denotes the family of universally Baire subsets of ℝ existing in V.
- NS $\subseteq \mathcal{P}(\aleph_1)$ is the ideal of non-stationary subsets of \aleph_1 .

Definition (Woodin-Schindler?)

UB-BMM⁺⁺ holds if whenever B is an SSP cba and V[G] is a forcing extension of V by B

 $\langle \mathcal{H}_{\aleph_2}, \in_{\Delta_0}, \mathsf{NS}, \mathcal{A} : \mathcal{A} \in \mathsf{UB}^V \rangle \prec_1 \langle \mathcal{V}[G], \in_{\Delta_0}, \mathsf{NS}^{\mathcal{V}[G]}, \mathcal{A}^{\mathcal{V}[G]} : \mathcal{A} \in \mathsf{UB}^V \rangle$

Theorem (Woodin) MM⁺⁺ *implies* UB-BMM⁺⁺.

Definition (Woodin-Schindler?)

UB-BMM⁺⁺ holds if whenever B is an SSP cba and V[G] is a forcing extension of V by B

 $\langle \mathcal{H}_{\aleph_2}, \in_{\Delta_0}, \mathsf{NS}, \mathcal{A} : \mathcal{A} \in \mathsf{UB}^V \rangle \prec_1 \langle \mathcal{V}[G], \in_{\Delta_0}, \mathsf{NS}^{\mathcal{V}[G]}, \mathcal{A}^{\mathcal{V}[G]} : \mathcal{A} \in \mathsf{UB}^V \rangle$

Theorem (Woodin)

MM⁺⁺ implies UB-BMM⁺⁺.

 $(*)_{UB}$ is a natural strengthening of Woodin's axiom (*).

Theorem (Asperó-Schindler)

Assume there is a proper class of Woodin cardinals. Then $(\ast)_{UB}$ if and only if UB-BMM $^{++}.$

Definition (Woodin-Schindler?)

UB-BMM⁺⁺ holds if whenever B is an SSP cba and V[G] is a forcing extension of V by B

 $\langle \mathcal{H}_{\aleph_2}, \in_{\Delta_0}, \mathsf{NS}, \mathcal{A} : \mathcal{A} \in \mathsf{UB}^V \rangle \prec_1 \langle \mathcal{V}[G], \in_{\Delta_0}, \mathsf{NS}^{\mathcal{V}[G]}, \mathcal{A}^{\mathcal{V}[G]} : \mathcal{A} \in \mathsf{UB}^V \rangle$

Theorem (Woodin)

MM⁺⁺ implies UB-BMM⁺⁺.

 $(*)_{UB}$ is a natural strengthening of Woodin's axiom (*).

Theorem (Asperó-Schindler)

Assume there is a proper class of Woodin cardinals. Then $(\ast)_{UB}$ if and only if UB-BMM $^{++}.$

Definition (Woodin-Schindler?)

UB-BMM⁺⁺ holds if whenever B is an SSP cba and V[G] is a forcing extension of V by B

 $\langle \mathcal{H}_{\aleph_2}, \in_{\Delta_0}, \mathsf{NS}, \mathcal{A} : \mathcal{A} \in \mathsf{UB}^V \rangle \prec_1 \langle \mathcal{V}[G], \in_{\Delta_0}, \mathsf{NS}^{\mathcal{V}[G]}, \mathcal{A}^{\mathcal{V}[G]} : \mathcal{A} \in \mathsf{UB}^V \rangle$

Theorem (Asperó-Schindler)

Assume there is a proper class of Woodin cardinals. Then Woodin's axiom (*) holds if and only if whenever B is an SSP cba and V[G] is a forcing extension of V by B

$$\langle H_{\aleph_2}, \in_{\Delta_0}, \mathsf{NS}, A : A \text{ is in } \mathcal{P}(\mathbb{R})^{L(\mathbb{R})^{\vee}} \rangle$$

is Σ_1 -elementary in

 $\langle V[G], \in_{\Delta_0}, \mathsf{NS}^{V[G]}, A^{V[G]} : A \text{ is in } \mathcal{P}(\mathbb{R})^{L(\mathbb{R})^V} \rangle.$

Recall that ψ is a Π_2 -sentence if it is of the form $\forall \vec{x} \exists \vec{y} \phi(\vec{x}, \vec{y})$ with $\phi(\vec{x}, \vec{y})$ quantifier free.

Recall that ψ is a Π_2 -sentence if it is of the form $\forall \vec{x} \exists \vec{y} \phi(\vec{x}, \vec{y})$ with $\phi(\vec{x}, \vec{y})$ quantifier free.

In signature $\in_{\Delta_0} \neg CH$ can be formalized by the Π_2 -sentence in parameter \aleph_1 (the first uncountable ordinal/cardinal):

 $\forall f [\underbrace{f \text{ is a function}}_{\Delta_0(f)} \land \underbrace{\text{dom}(f) = \aleph_1}_{\Delta_0(f,\aleph_1)}) \rightarrow \exists r (\underbrace{r \subseteq \mathbb{N}}_{\Delta_0(r,\mathbb{N})} \land \underbrace{r \notin \text{ran}(f)}_{\Delta_0(r,f)}]$

Note that $\aleph_1 \in H_{\aleph_2}$.

Recall that ψ is a Π_2 -sentence if it is of the form $\forall \vec{x} \exists \vec{y} \phi(\vec{x}, \vec{y})$ with $\phi(\vec{x}, \vec{y})$ quantifier free.

Theorem (Woodin)

Assume Vopenka's principle, <u>Sealing</u>, and NS is precipitous. TFAE:

- (*)_{UB} (or UB-BMM⁺⁺).
- For any Π_2 -sentences ψ for $\in_{\Delta_0} \cup \{\aleph_1, \mathsf{NS}\} \cup \{\mathsf{A} : \mathsf{A} \in \mathsf{UB}^V\}$

$$\langle H_{\aleph_2}, \in_{\Delta_0}, \aleph_1, \mathsf{NS}, \mathsf{A} : \mathsf{A} \in \mathsf{UB}^V \rangle \models \psi$$

if and only if ψ is true in $H_{\aleph_2}^{V[G]}$ for some forcing extension V[G] of V.

AlgMaxST 0000000000

Algebraic maximality for $\mathcal{P}(\aleph_1)$ part III

Theorem (Woodin)

Assume Vopenka's principle, <u>Sealing</u>, and NS is precipitous. TFAE:

- (*)_{UB} (or UB-BMM⁺⁺).
- For any Π₂-sentences ψ for ∈_{Δ0} ∪ {ℵ₁, NS} ∪ {A : A ∈ UB^V} (among which ¬CH and a strong form of 2^{ℵ0} = ℵ₂)

$$\langle H_{\aleph_2}, \in_{\Delta_0}, \aleph_1, \mathsf{NS}, \mathsf{A} : \mathsf{A} \in \mathsf{UB}^V \rangle \models \psi$$

if and only if ψ is true in $H_{\aleph_2}^{V[G]}$ for some forcing extension V[G] of V.

イロト イボト イヨト イヨト 二日

Theorem (Woodin)

Assume Vopenka's principle, <u>Sealing</u>, and NS is precipitous. TFAE:

- (*)_{UB} (or UB-BMM⁺⁺).
- For any Π_2 -sentences ψ for $\in_{\Delta_0} \cup \{\aleph_1, \mathsf{NS}\} \cup \{\mathsf{A} : \mathsf{A} \in \mathsf{UB}^V\}$

$$\langle H_{\aleph_2}, \in_{\Delta_0}, \aleph_1, \mathsf{NS}, \mathsf{A} : \mathsf{A} \in \mathsf{UB}^V \rangle \models \psi$$

if and only if ψ is true in $H_{\aleph_2}^{V[G]}$ for some forcing extension V[G] of V.

Sealing can be removed by replacing UB with $\mathcal{P}(\mathbb{R})^N$ for some nice inner model *N* of determinacy in the formulation of BMM^{*++} and in the relevant spots.

Theorem (V.)

Assume Vopenka's principle, <u>Sealing</u>, and NS is precipitous. TFAE:

- (*)_{UB} (or UB-BMM⁺⁺).
- The theory T of the structure

$$\mathcal{M} = \langle H_{\aleph_2}, \in_{\Delta_0}, \aleph_1, \mathsf{NS}, \mathsf{A} : \mathsf{A} \in \mathsf{UB}^V \rangle$$

is the model companion of the theory S of the structure

$$\langle V, \in_{\Delta_0}, \aleph_1, \mathsf{NS}, A : A \in \mathsf{UB}^V \rangle.$$

ヘロト 人間 ト 人目 ト 人目 トー

Theorem (V.)

Assume Vopenka's principle, <u>Sealing</u>, and NS is precipitous. TFAE:

- (*)_{UB} (or UB-BMM⁺⁺).
- The theory T of the structure

$$\mathcal{M} = \langle H_{\aleph_2}, \in_{\Delta_0}, \aleph_1, \mathsf{NS}, \mathsf{A} : \mathsf{A} \in \mathsf{UB}^V \rangle$$

is the model companion of the theory S of the structure

$$\langle V, \in_{\Delta_0}, \aleph_1, \mathsf{NS}, A : A \in \mathsf{UB}^V \rangle.$$

ヘロト 人間 ト 人目 ト 人目 トー

Theorem (V.)

Assume Vopenka's principle, <u>Sealing</u>, and NS is precipitous. TFAE:

- (*)_{UB} (or UB-BMM⁺⁺).
- The theory T of the structure

$$\mathcal{M} = \langle \mathcal{H}_{\aleph_2}, \in_{\Delta_0}, \aleph_1, \mathsf{NS}, \mathsf{A} : \mathsf{A} \in \mathsf{UB}^{\mathsf{V}} \rangle$$

is the model companion of the theory S of the structure

$$\langle V, \in_{\Delta_0}, \aleph_1, NS, A : A \in UB^V \rangle.$$

Letting S_{∀∨∃} be the boolean combination of existential sentences which are in S, and ψ be a Π₂-sentence,
 M models ψ if and only ψ + S_{∀∨∃} is consistent.

Theorem (V.)

Assume Vopenka's principle, <u>Sealing</u>, and NS is precipitous. TFAE:

- (*)_{UB} (or UB-BMM⁺⁺).
- For any Π₂-sentences ψ

 $\langle H_{\aleph_2}, \in_{\Delta_0}, \mathsf{NS}, \mathsf{A} : \mathsf{A} \in \mathsf{UB}^V \rangle \models \psi$

if and only if ψ is true in $H_{\aleph_2}^{V[G]}$ for some forcing extension V[G] of V. if and only if $\psi + S_{VV\exists}$ is consistent where S is the theory of the structure

 $\langle V, \in_{\Delta_0}, \aleph_1, \mathsf{NS}, A : A \in \mathsf{UB}^V \rangle.$

イロト イヨト イヨト イヨト 三日

Theorem (V.)

Assume Vopenka's principle, <u>Sealing</u>, and NS is precipitous. TFAE:

- (*)_{UB} (or UB-BMM⁺⁺).
- The theory T of the structure

$$\mathcal{M} = \langle \mathcal{H}_{\aleph_2}, \in_{\Delta_0}, \aleph_1, \mathsf{NS}, \mathcal{A} : \mathcal{A} \in \mathsf{UB}^V \rangle$$

is the model companion of the theory S of the structure

$$\langle V, \in_{\Delta_0}, \aleph_1, NS, A : A \in UB^V \rangle.$$

Letting S_{∀∨∃} be the boolean combination of existential sentences which are in S, and ψ be a Π₂-sentence,
 M models ψ if and only ψ + S_{∀∨∃} is consistent.

Sealing can be removed if one replaces UB^V with $\mathcal{P}(R)^{L(\operatorname{Ord}^N)}$ in the formulation of BMM*++ and in the relevant spots.

AlgCl 00000	FormST 00	AlgMaxST ooooooooo●	App 0000		
Algebraic maximality for $\mathcal{P}(\aleph_1)$					
Theory	degree of algebra	ic closure			
МК	$\langle H_{\aleph_2}, \in_{\Delta_0}, NS, A : A$ is a substructure o	f			
	$\langle V[G], \in_{\Delta_0}, NS^{V[G]},$ for all generic exte	$A^{V[G]} : A \in OB^{*}$ nsion $V[G]$ of V by an SSP-	-forcing		
MK+	$\langle H_{\aleph_2}, \in_{\Delta_0}, NS, A : A$ is a Σ_1 -substructure				
	$\langle V[G], \in_{\Delta_0}, NS^{V[G]},$				
	for all generic exte	nsion <i>V</i> [<i>G</i>] of <i>V</i> by an SSP-	forcing		
MK+ large cardinal	for all generic exte $\langle V[G], \in \Delta_0, NS^{V[G]}, \rangle$	nsion $V[G]$ of V the theories	s of		
		del companion theory			
MK+	for all generic exte $\langle V[G], \in_{\Delta_0}, NS^{V[G]}, $	nsion $V[G]$ of V the theories $A^{V[G]} : A \in UB^V$	s of		
	have as model cor $\langle H^V_{\aleph_2}, \in_{\Delta_0}, NS^V, A^V$	npanion the theory of : A ∈ UB ^V 〉			
		 < 	► 980		

> クへで 20/24

AlgCl 00000	FormST oo	AlgMaxST ○○○○○○○○●	App 0000		
Algebraic maximality for $\mathcal{P}(\aleph_1)$					
Theory	degree of algebrai	c closure			
мк	$\langle H_{\aleph_2}, \in_{\Delta_0}, NS, A : A$ is a substructure of $\langle V[G], \in_{\Delta_0}, NS^{V[G]}, J$ for all coportio extors		orcina		
MK+ forcing axioms	$\langle \mathcal{H}_{\aleph_2}, \in_{\Delta_0}, NS, A : A$ is a Σ_1 -substructur $\langle \mathcal{V}[G], \in_{\Delta_0}, NS^{\mathcal{V}[G]}, \mathcal{I}$	$\in UB^{V}$ e of			
MK+ large cardinal axioms MK+ large cardinals + forcing	for all generic exter $\langle V[G], \in_{\Delta_0}, NS^{V[G]}, J$ have the same moo for all generic exter $\langle V[G], \in_{\Delta_0}, NS^{V[G]}, J$	asion $V[G]$ of V the theories $A^{V[G]} : A \in UB^V$ lel companion theory asion $V[G]$ of V the theories $A^{V[G]} : A \in UB^V$ apanion the theory of	of		
	$(\gamma_{N_2}, \neg \Delta_0, \gamma_{N_2}, \neg \Delta_0)$	· · · · · · · · · · · · · · · · · · ·	三 りゃつ		

> クへで 20/24

$\begin{array}{ c c c c c } \hline Algebraic maximality for \mathcal{P}(\aleph_1) \\ \hline \hline \mbox{Theory} & \mbox{degree of algebraic closure} \\ \hline \mbox{MK} & \mbox{$\langle H_{\aleph_2}, \in_{\Delta_0}, NS, A : A \in UB^V \rangle$} \\ \mbox{is a substructure of} \\ \hline \mbox{$\langle V[G], \in_{\Delta_0}, NS^{V[G]}, A^{V[G]} : A \in UB^V \rangle$} \\ \mbox{for all generic extension $V[G]$ of V by an SSP-forcing$} \\ \hline \mbox{MK+} & \mbox{is a Σ_1-substructure of} \\ \hline \mbox{$\langle V[G], \in_{\Delta_0}, NS^{V[G]}, A^{V[G]} : A \in UB^V \rangle$} \\ \mbox{axioms} & \mbox{for all generic extension $V[G]$ of V by an SSP-forcing$} \\ \hline \mbox{MK+} & \mbox{for all generic extension $V[G]$ of V by an SSP-forcing$} \\ \hline \mbox{MK+} & \mbox{for all generic extension $V[G]$ of V by an SSP-forcing$} \\ \hline \mbox{MK+} & \mbox{for all generic extension $V[G]$ of V the theories of$} \\ \hline \mbox{$\langle V[G], \in_{\Delta_0}, NS^{V[G]}, A^{V[G]} : A \in UB^V \rangle$} \\ \hline \mbox{have the same model companion theory$} \\ \hline \mbox{for all generic extension $V[G]$ of V the theories of$} \\ \hline \mbox{$\langle V[G], e_{\Delta_0}, NS^{V[G]}, A^{V[G]} : A \in UB^V \rangle$} \\ \hline \mbox{have the same model companion theory$} \\ \hline \mbox{for all generic extension $V[G]$ of V the theories of$} \\ \hline \mbox{$\langle V[G], e_{\Delta_0}, NS^{V[G]}, A^{V[G]} : A \in UB^V \rangle$} \\ \hline \mbox{have the same model companion theory$} \\ \hline \mbox{for all generic extension $V[G]$ of V the theories of$} \\ \hline \mbox{$\langle V[G], e_{\Delta_0}, NS^{V[G]}, A^{V[G]} : A \in UB^V \rangle$} \\ \hline \mbox{have the same model companion theory$} \\ \hline \mbox{for all generic extension $V[G]$ of V the theories of$} \\ \hline \mbox{for all generic extension $V[G]$ of V the theories of$} \\ \hline \mbox{for all generic extension $V[G]$ of V the theories of$} \\ \hline \mbox{for all generic extension $V[G]$ of V the theories of$} \\ \hline \mbox{for all generic extension $V[G]$ of V the theories of$} \\ \hline \mbox{for all generic extension $V[G]$ of V the theories of$} \\ \hline \mbox{for all generic extension $V[G]$ of V the theories of$} \\ \hline \mbox{for all generic extension $V[G]$ of V the theories of$} \\ \hline \mbox{for all generic extension $V[G]$ of V the theories of$} \\$	AlgCl 00000	FormST 00	AlgMaxST ○○○○○○○○●	App 0000		
$\begin{array}{c c} MK & \langle \mathcal{H}_{N_2}, \in_{\Delta_0}, NS, A : A \in UB^V \rangle \\ \text{ is a substructure of} \\ \langle \mathcal{V}[G], \in_{\Delta_0}, NS^{V[G]}, A^{V[G]} : A \in UB^V \rangle \\ \text{ for all generic extension } \mathcal{V}[G] \text{ of } V \text{ by an SSP-forcing} \\ \hline MK + & is a \Sigma_1 \text{-substructure of} \\ \langle \mathcal{V}[G], \in_{\Delta_0}, NS, A : A \in UB^V \rangle \\ \text{ is a } \Sigma_1 \text{-substructure of} \\ \langle \mathcal{V}[G], \in_{\Delta_0}, NS^{V[G]}, A^{V[G]} : A \in UB^V \rangle \\ \text{ for all generic extension } \mathcal{V}[G] \text{ of } V \text{ by an SSP-forcing} \\ \hline MK + & for all generic extension \mathcal{V}[G] \text{ of } V \text{ by an SSP-forcing} \\ \hline MK + & for all generic extension \mathcal{V}[G] \text{ of } V \text{ by an SSP-forcing} \\ \hline MK + & for all generic extension \mathcal{V}[G] \text{ of } V \text{ the theories of} \\ \langle \mathcal{V}[G], \in_{\Delta_0}, NS^{\mathcal{V}[G]}, A^{\mathcal{V}[G]} : A \in UB^V \rangle \\ \text{ have the same model companion theory} \\ \end{array}$	Algebraic maximality for $\mathcal{P}(\aleph_1)$					
MKis a substructure of $\langle V[G], \in_{\Delta_0}, NS^{V[G]}, A^{V[G]} : A \in UB^V \rangle$ for all generic extension $V[G]$ of V by an SSP-forcingMK+ $\langle H_{N_2}, \in_{\Delta_0}, NS, A : A \in UB^V \rangle$ is a Σ_1 -substructure of $\langle V[G], \in_{\Delta_0}, NS^{V[G]}, A^{V[G]} : A \in UB^V \rangle$ for all generic extension $V[G]$ of V by an SSP-forcingMK+for all generic extension $V[G]$ of V by an SSP-forcingMK+for all generic extension $V[G]$ of V by an SSP-forcingMK+for all generic extension $V[G]$ of V by an SSP-forcingMK+have the same model companion theory	Theory	degree of algebrai	c closure			
$\begin{array}{c c} MK+& \langle \mathcal{H}_{\aleph_2}, \in_{\Delta_0}, NS, A: A\in UB^V\rangle\\ \text{ is a } \Sigma_1\text{-substructure of}\\ \langle \mathcal{V}[G], \in_{\Delta_0}, NS^{\mathcal{V}[G]}, A^{\mathcal{V}[G]}: A\in UB^V\rangle\\ \text{ for all generic extension } \mathcal{V}[G] \text{ of } V \text{ by an SSP-forcing}\\ \\ \begin{array}{c} MK+\\ large cardinal\\ axioms \end{array} & for all generic extension \mathcal{V}[G] \text{ of } V \text{ the theories of}\\ \langle \mathcal{V}[G], \in_{\Delta_0}, NS^{\mathcal{V}[G]}, A^{\mathcal{V}[G]}: A\in UB^V\rangle\\ have the same model companion theory \end{array}$	МК	is a substructure of $(V[G], \in_{\Delta_0}, NS^{V[G]}, J)$	A ^{V[G]} : A ∈ UB ^V 〉	orcing		
large cardinal axioms $\langle V[G], \in_{\Delta_0}, NS^{V[G]}, A^{V[G]} : A \in UB^V \rangle$ have the same model companion theory	forcing	$(H_{\aleph_2}, \in_{\Delta_0}, NS, A : A)$ is a Σ_1 -substructur $(V[G], \in_{\Delta_0}, NS^{V[G]}, A)$				
for all generic extension $V[G]$ of V the theories of	large cardinal	$(V[G], \in_{\Delta_0}, NS^{V[G]}, J)$	$A^{V[G]}: A \in UB^V$	of		
$\begin{array}{l} MK+\\ large cardinals+\\ forcing\\ axioms \end{array} \hspace{0.2cm} \langle V[G], \in_{\Delta_0}, NS^{V[G]}, A^{V[G]}: A \in UB^V \rangle\\ have as model companion \text{ the theory of} \\ \langle H^V_{\aleph_2}, \in_{\Delta_0}, NS^V, A^V: A \in UB^V \rangle\\ axioms \end{array}$		$V[G], \in_{\Delta_0}, NS^{V[G]}, J$ have as model con	$A^{V[G]} : A \in UB^{V}$ panion the theory of $A \in UB^{V}$			

AlgCl	FormST 00	AlgMaxST ○○○○○○○●	App 0000		
Algebraic maximality for $\mathcal{P}(\aleph_1)$					
Theory	degree of algebraic	closure			
МК	$\langle H_{\aleph_2}, \in_{\Delta_0}, NS, A : A$ is a substructure of				
	$\langle V[G], \in_{\Delta_0}, NS^{V[G]}, A$ for all generic extension	${}^{V[G]} : A \in UB^V$ sion $V[G]$ of V by an SSP-form	cing		
	$\langle H_{\aleph_2}, \in_{\Delta_0}, NS, A : A$				
MK+	is a Σ_1 -substructure				
forcing	$\langle V[G], \in_{\Delta_0}, NS^{V[G]}, A$	$V^{[G]}: A \in UB^V$			
axioms	for all generic extens	sion V[G] of V by an SSP-for	cing		
MK+ large cardinal	$\langle V[G], \epsilon_{\Delta_0}, NS^{V[G]}, A$				
axioms		el companion theory			
		sion $V[G]$ of V the theories of	1		
MK+	$\langle V[G], \in_{\Delta_0}, NS^{V[G]}, A$	$V^{[G]}: A \in UB^V$			
large cardinals +	have as model com				
forcing	$\langle H^V_{\aleph_2}, \in_{\Delta_0}, NS^V, A^V :$	$A \in UB^V$			
axioms		<□>	E ORC		

20/24

AlgCl

FormST

AlgMaxST

App •000

Section 5

Appendixes

4 ロト 4 日 ト 4 日 ト 4 日 ト 4 日 や 9 0 0
21/24

Appendix 0: Some references A few surveys on Gödel's program and the Continuum problem:

- J. Bagaria, *Natural axioms on set theory and the continuum problem*, CRM Preprint, 591, 2004.
- P. Koellner, On the question of absolute undecidability, in Kurt Gödel: essays for his centennial, Lect. Notes Log. 33, 2010.
- G. Venturi and M. Viale, What model companionship can say about the Continuum problem, arXiv:2204.13756, 2022.
- M. Viale, Strong forcing axioms and the continuum problem, in Séminaire Bourbaki. Volume 2022/2023. Exposés 1197–1211, 2023, (SMF).
- W. H. Woodin, *The Continuum hypothesis Part I*, Notices of AMS, 48(6), 2001.
- W. H. Woodin, *The Continuum hypothesis Part II*, Notices of AMS, 48(7), 2001.

Definition

Let (X, τ) be a locally compact Polish space. $A \subseteq X$ is *universally* Baire if for all continuous $f : Y \to X$ with (Y, σ) compact Hausdorff, $f^{-1}[A]$ has the Baire property in (Y, σ) .

Universal Baireness describes the **absolutely** regular sets of reals:

Consider $2^{\mathbb{N}}$ as a closed subspace of [0; 1]. It is meager.

Now take a subset *P* of $2^{\mathbb{N}}$ which does not have the Baire property in $2^{\mathbb{N}}$.

Seen as a subset of [0; 1], *P* is meager, hence it has the Baire property, but *P* is also the preimage under the inclusion map of $2^{\mathbb{N}}$ inside [0; 1].

This map is continuous, and the preimage of P does not have the Baire property in $2^{\mathbb{N}}$.

Definition

Let (X, τ) be a locally compact Polish space. $A \subseteq X$ is *universally* Baire if for all continuous $f : Y \to X$ with (Y, σ) compact Hausdorff, $f^{-1}[A]$ has the Baire property in (Y, σ) .

Universal Baireness describes the **absolutely** regular sets of reals:

Consider $2^{\mathbb{N}}$ as a closed subspace of [0; 1]. It is meager.

Now take a subset *P* of $2^{\mathbb{N}}$ which does not have the Baire property in $2^{\mathbb{N}}$.

Seen as a subset of [0; 1], *P* is meager, hence it has the Baire property, but *P* is also the preimage under the inclusion map of $2^{\mathbb{N}}$ inside [0; 1].

This map is continuous, and the preimage of P does not have the Baire property in $2^{\mathbb{N}}$.

Definition

Let (X, τ) be a locally compact Polish space. $A \subseteq X$ is *universally* Baire if for all continuous $f : Y \to X$ with (Y, σ) compact Hausdorff, $f^{-1}[A]$ has the Baire property in (Y, σ) .

Universal Baireness describes the **absolutely** regular sets of reals:

Consider $2^{\mathbb{N}}$ as a closed subspace of [0; 1]. It is meager.

Now take a subset *P* of $2^{\mathbb{N}}$ which does not have the Baire property in $2^{\mathbb{N}}$.

Seen as a subset of [0; 1], *P* is meager, hence it has the Baire property, but *P* is also the preimage under the inclusion map of $2^{\mathbb{N}}$ inside [0; 1].

This map is continuous, and the preimage of P does not have the Baire property in $2^{\mathbb{N}}$.

Hence $P \subseteq [0; 1]$ is not universally Baire, even if it has the Baire property.

23/24

Definition

Let (X, τ) be a locally compact Polish space. $A \subseteq X$ is *universally* Baire if for all continuous $f : Y \to X$ with (Y, σ) compact Hausdorff, $f^{-1}[A]$ has the Baire property in (Y, σ) .

Universal Baireness describes the **absolutely** regular sets of reals:

Consider $2^{\mathbb{N}}$ as a closed subspace of [0; 1]. It is meager.

Now take a subset *P* of $2^{\mathbb{N}}$ which does not have the Baire property in $2^{\mathbb{N}}$.

Seen as a subset of [0; 1], *P* is meager, hence it has the Baire property, but *P* is also the preimage under the inclusion map of $2^{\mathbb{N}}$ inside [0; 1].

This map is continuous, and the preimage of P does not have the Baire property in $2^{\mathbb{N}}$.

Hence $P \subseteq [0; 1]$ is not universally Baire, even if it has the Baire property.

23/24

Definition

Let (X, τ) be a locally compact Polish space. $A \subseteq X$ is *universally* Baire if for all continuous $f : Y \to X$ with (Y, σ) compact Hausdorff, $f^{-1}[A]$ has the Baire property in (Y, σ) .

Universal Baireness describes the **absolutely** regular sets of reals:

Consider $2^{\mathbb{N}}$ as a closed subspace of [0; 1]. It is meager.

Now take a subset *P* of $2^{\mathbb{N}}$ which does not have the Baire property in $2^{\mathbb{N}}$.

Seen as a subset of [0; 1], P is meager, hence it has the Baire

property, but *P* is also the preimage under the inclusion map of $2^{\mathbb{N}}$ inside [0; 1].

This map is continuous, and the preimage of P does not have the Baire property in $2^{\mathbb{N}}$.

Definition

Let (X, τ) be a locally compact Polish space. $A \subseteq X$ is *universally* Baire if for all continuous $f : Y \to X$ with (Y, σ) compact Hausdorff, $f^{-1}[A]$ has the Baire property in (Y, σ) .

Universal Baireness describes the **absolutely** regular sets of reals:

Consider $2^{\mathbb{N}}$ as a closed subspace of [0; 1]. It is meager.

Now take a subset *P* of $2^{\mathbb{N}}$ which does not have the Baire property in $2^{\mathbb{N}}$.

Seen as a subset of [0; 1], *P* is meager, hence it has the Baire property, but *P* is also the preimage under the inclusion map of $2^{\mathbb{N}}$ inside [0; 1].

This map is continuous, and the preimage of P does not have the Baire property in $2^{\mathbb{N}}$.

Definition

Let (X, τ) be a locally compact Polish space. $A \subseteq X$ is *universally* Baire if for all continuous $f : Y \to X$ with (Y, σ) compact Hausdorff, $f^{-1}[A]$ has the Baire property in (Y, σ) .

Universal Baireness describes the **absolutely** regular sets of reals:

Consider $2^{\mathbb{N}}$ as a closed subspace of [0; 1]. It is meager.

Now take a subset *P* of $2^{\mathbb{N}}$ which does not have the Baire property in $2^{\mathbb{N}}$.

Seen as a subset of [0; 1], *P* is meager, hence it has the Baire property, but *P* is also the preimage under the inclusion map of $2^{\mathbb{N}}$ inside [0; 1].

This map is continuous, and the preimage of *P* does not have the Baire property in $2^{\mathbb{N}}$.

Definition

Let (X, τ) be a locally compact Polish space. $A \subseteq X$ is *universally* Baire if for all continuous $f : Y \to X$ with (Y, σ) compact Hausdorff, $f^{-1}[A]$ has the Baire property in (Y, σ) .

Universal Baireness describes the **absolutely** regular sets of reals:

Consider $2^{\mathbb{N}}$ as a closed subspace of [0; 1]. It is meager.

Now take a subset *P* of $2^{\mathbb{N}}$ which does not have the Baire property in $2^{\mathbb{N}}$.

Seen as a subset of [0; 1], *P* is meager, hence it has the Baire property, but *P* is also the preimage under the inclusion map of $2^{\mathbb{N}}$ inside [0; 1].

This map is continuous, and the preimage of *P* does not have the Baire property in $2^{\mathbb{N}}$.

Appendix 2: Sealing

Definition (Woodin)

Given $(\mathcal{D}, W, \in_{\Delta_0})$ transitive model of MK, let N^W be the set $\mathcal{P}(H_{\aleph_1})^{L(UB)^W}$, where $L(UB)^W$ is the smallest transitive model of ZF containing UB^W.

(A weak form of) Sealing holds in a model (C, V, \in_{Δ_0}) of MK+*enough large cardinals* if whenever V[G] is a forcing extension of V and V[H] a forcing extension of V[G] we have that

$$\big(N^{V[G]},H^{V[G]}_{\aleph_1},\in_{\Delta_0}\big)<\big(N^{V[H]},H^{V[H]}_{\aleph_1},\in_{\Delta_0}\big).$$

Theorem (Woodin)

Assume V models κ is supercompact and there are class many Woodin cardinals. Let V[H] be a generic extension of V where κ is countable. Then sealing holds in V[H].

AlgMaxST 000000000

Appendix 2: Sealing

Definition (Woodin)

Given $(\mathcal{D}, W, \in_{\Delta_0})$ transitive model of MK, let N^W be the set $\mathcal{P}(H_{\aleph_1})^{L(UB)^W}$, where $L(UB)^W$ is the smallest transitive model of ZF containing UB^W.

(A weak form of) Sealing holds in a model (C, V, \in_{Δ_0}) of MK+*enough large cardinals* if whenever V[G] is a forcing extension of V and V[H] a forcing extension of V[G] we have that

$$\big(N^{V[G]},H^{V[G]}_{\aleph_1}, \in_{\Delta_0}\big) < \big(N^{V[H]},H^{V[H]}_{\aleph_1}, \in_{\Delta_0}\big).$$

Theorem (Woodin)

Assume V models κ is supercompact and there are class many Woodin cardinals. Let V[H] be a generic extension of V where κ is countable. Then sealing holds in V[H].

Appendix 2: Sealing

Definition (Woodin)

Given $(\mathcal{D}, W, \in_{\Delta_0})$ transitive model of MK, let N^W be the set $\mathcal{P}(H_{\aleph_1})^{L(UB)^W}$, where $L(UB)^W$ is the smallest transitive model of ZF containing UB^W.

(A weak form of) Sealing holds in a model (C, V, \in_{Δ_0}) of MK+*enough large cardinals* if whenever V[G] is a forcing extension of V and V[H] a forcing extension of V[G] we have that

$$\big(N^{V[G]},H^{V[G]}_{\aleph_1},\in_{\Delta_0}\big) < \big(N^{V[H]},H^{V[H]}_{\aleph_1},\in_{\Delta_0}\big).$$

Theorem (Woodin)

Assume V models κ is supercompact and there are class many Woodin cardinals. Let V[H] be a generic extension of V where κ is countable. Then sealing holds in V[H].